Home » Posts tagged 'Methane'

Tag Archives: Methane

Is the Risk of Methane Being Greatly Under Underestimated?

Lately, in a strong sign of enormous change brewing in the arctic, methane levels in the region have been spiking to unheard of levels.

The reason is that on the heels of a multi million year and still fast accumulating change upward in earth’s long term atmospheric energy recapture, things are happening below the water’s surface (and in the many fields of (traditionally) near perpetual frost covering much of the northern land of the globe), that are in turn starting to affect what’s happening above the surface.

This is especially true when it comes to the “second” most important greenhouse gas, methane; a gas we may be greatly underestimating in terms of net future impact. And for some pretty key reasons:

Namely, the fact of increasing release of methane from otherwise long frozen deposits that our geologically radical atmospheric alteration is increasingly setting in motion. And the way we currently measure this gas’s importance. That is, based upon current amounts; the fact that more than half of it largely disappears within 10 years; and the fact we can lessen our own emissions which have, at least historically, largely contributed to methane levels’ sudden modern rise.

This current method of assesment that hinges on the fact methane doesn’t last very long, brings up a fundamental problem in assessing methane’s future impact if levels of methane in fact stay high or go higher: That is, the methane gas breaking down is replenished by new methane; and thus future effect estimations based upon most of the current methane in the atmosphere breaking down won’t apply, and total future effect will be greatly underestimated.

_______

Methane, or CH4, is a potent greenhouse gas – many, many times more effective at absorbing and re-radiating thermal radiation than its more popular cousin CO2.

In terms of earth’s accumulating net energy balance – the phenomenon a little misleadingly but very popularly called “climate change,” CH4 may be considered less critical than CO2. That is, if levels don’t continue to significantly rise.

But at about 1/250th of the current the atmospheric concentration, but perhaps as high as near 200 times the GWPe (or Global Warming Potential equivalent) of CO2 at any one point in time, methane still plays a huge role in the increase in thermal radiation energy recapture in our atmosphere, and the resulting long term earth impacts from it, that in essence constitute this infamous and often misunderstood climate change phenomenon.

Perhaps even more interestingly yet rarely noted, the total percentage increase in atmospheric methane over pre-industrial levels is also much higher than the total percentage increase in Carbon Dioxide from pre industrial levels. (Total concentration of atmospheric methane rose from roughly 750-800 ppb, to just above 1800 –  an increase of around 100%- while concentrations of carbon dioxide rose from roughly 280 or 290 ppm to about 400 – an increase of around 40%.)

Thus the total net effect of modern industrial era increases of methane on earth’s climate shows as a much higher ratio to carbon dioxide than when just the relative total amount of each gas in the atmosphere – which includes all of the gas that reflects pre industrial levels as well, as normally done – is considered.

If the total energy recapturing effect of the increase in trailing methane levels over pre industrial times is considered in relation to the total energy recpaturing effect of the increase in trailing carbon dioxide levels over pre industrial times, the overall impact of each gas is closer than the wide disparity in importance normally attributed to each. (Methane increases are at about a 1:110 ratio to carbon dioxide increases over pre industrial times, and methane is potentially more than 110x as effective per unit of mass, as methane, at recapturing energy than carbon dioxide, although there are limitations concerning how much of this effect is realized at any point given a few considerations briefly referenced below.)

The effect of any unit mass of methane (that’s not replaced), over a longer period is far less, however. For instance, methane is estimated to have only have around 25 times the warming effect of CO2 over a 100 year period. (And about 85 times over a 20 year period.) This is because over a 100 year period methane only exists as methane for a small fraction of the time; and over a 20 year period it still exists as methane a minority of the time, with slightly more than half of it gone after just 10 years.

So since it breaks down somewhat quickly, if we’re trying to gauge the future effect of the gases in the atmosphere right now, it makes sense to use a long time period – such as “100 years,” the most common figure – to estimate methane’s potential future climate change impact; and thus project that impact as much lower than if we didn’t otherwise do this, since most of the gas won’t be methane during the great majority of the period.

But, if methane stays at current levels or goes higher, this doesn’t make any sense: The same amount of methane being projected out over 100 years on the far reduced basic, will instead continue to be in the atmosphere, and thus have an effect many times greater than will be yielded by using the far lower “warming potential” for each gram of methane that, essentially, is largely based upon most of it not existing during that time period.

Modern methane levels, just like carbon dioxide, have also essentially shot straight up in relation to the long term trailing geologic record. And there’s high risk of them not only staying high (making current assessments of methane’s future impact significantly underestimated), but climbing higher still – possibly even exploding higher over a relevant span of time in the near geologic future:

For – and well below the radar of most modern society – methane levels in the arctic have recently been spiking much, much, higher.

And this increasing signal of arctic change, may be starting to tell a rather remarkable story.

Methane, and the Constraint of our Imaginations

Below is an EPA graph that on the left shows methane levels up to the present, dating back about 800,000 years. The right blows up the last .00008 years of the left side of the chart, and shows methane levels from 1950 to 2013.  As can be seen, prior to the industrial revolution and for going on at least near a million years, atmospheric methane levels were never above 800 ppb.

Yet notice on the left of the graph how at the very end of the 800,000 year period, the levels a) essentially shoot straight up, and b) geologically, shoot up by a whopping total amount.

That is, during our modern industrial age – barely a pinprick of even recent geologic time – methane levels have suddenly shot up to more than double the highest average atmospheric concentration earth has seen in close to a million years. (And, if we consider past levels in comparison to today’s, levels have very likely been lower for a lot longer, although harder to directly ascertain since the most reliable source of trailing geologic atmospheric data – ice core sampling from holes drilled “backward” in time down into layers of thick glacial ice – only goes back about 800,000 years.)

That is, methane levels have not just significantly increased, but have gone up by more than an additional 800 ppb increase alone. And lately in the arctic, methane levels have spiked an additional 800 ppb or more further above that.

Methane is nowhere near as long lasting as the other major long lived greenhouse gases. And it breaks down (largely into CO2) over several years. (It takes about 12 years for a quantity of methane to be reduced to around 37% of its original amount.)

Yet it’s an intensely more powerful thermal radiation reabsorbing and reradiating greenhouse gas than carbon dioxide. So the more of the original methane that still exists as such (or that’s simply replaced by new methane) at any one time, the higher its energy capture and re radiation potential (the “trapping” of heat energy that then in turn transfers large amounts back to the earth, ice sheets, oceans, and so on and so on), will be.

In fact, over a 20 year period, the global warming potential per unit mass of methane is, again, somewhere  in the neighborhood of 85 or so times that of carbon dioxide. This means that over 20 years 1000 extra tonnes of methane added to the net amount in the atmosphere can have up to the same energy recapture effect as roughly 85,000 extra tonnes of carbon dioxide added to the net amount in the atmosphere.

It actually gets somewhat more complicated than this, as the more total greenhouse gas in the atmosphere, the more heat energy is trapped all around, including capture of already absorbed and re rediated energy that is re radiated downward (back toward earth) and then re captured and re radiated once again in all directions.

The impact of increased trapped radiation back upon earth’s systems from an increase in total greenhouse gas concentrations also have interacting effects that also impact total net long term energy retention. (For instance, a sufficient increase in trapped radiation will lessen total ice cover, grealy increasing solar absorption. This means more direct warming – heat energy retention – of the physical land, ice and in particular global ocean will occur, less sunlight will be reflected back upward as still short wavelength solar radiation (which essentially isn’t “trapped” or absorbed by greenhouse gases), and far more will ultimately be radiated in medium wavelength, as thermal radiation, and re captured by greenhouses instead.)

But this potentially non linear nature of total net greenhouse gas radiative forcing is also part of why just a few hundred ppm of CO2 and ppb of CH4, and small amounts of a few other lesser gases, are sufficient to keep earth at about 58 degrees on average world wide, instead of all but a lifeless frozen ball of ice averaging 0 degrees; but a doubling of these amounts wouldn’t jack up earth’s average temperature to 116 degrees, which would turn earth into a furnace. This is a gross oversimplification, but it helps show the complication.

(It also helps show how on the flip side, a fairly large increase in those concentrations will, among other things, ultimately likely raise the earth several degrees, depending on feedbacks and other effects, and far more relevantly presents a larger risk range of lower end effects to major if not radical climatic shifting. Although every single possible complication, and multiple invented ones, are grasped at to try and reinforce the archaic, and very much the opposite of Galileo, belief that man can’t much relevantly affect his own global environment here on earth.)

Methane also re radiates certain bands of thermal radiation wavelength, so as more and more methane is present, the increased recapture of energy already trapped by molecules, which would amplify far more quickly from major increases in methane than in the case of carbon dioxide since it’s such a far more potent energy capturing gas, as well as from the atttendant potential limitation of available energy at that wavelength, would tend to cause methane to have a somewhat lower total energy recapture impact than its total warming potential (potential per molecule to absorb and re radiate thermal radiation).

But the bigger point is that even in terms of assessing methane’s overall impact by using the far more finely honed but complex and inexact radiative forcing quotients than the simplistic story told here, higher ongoing amounts of methane in our atmosphere mean a very different and far more powerful story than the one currently told by estimates that are based on current atmospheric methane amounts and the fairly fast breakdown rate of that methane, that thus uses a far lower energy trapping quotient than is likely going to be realized in the atmosphere from total methane concentrations over time.

In other words, if we project the effect of 1800 ppm methane over 100 years, as is commonly done, and use the GWPe wherein most of that 1800 ppm is not methane for the great majority of the time period, the estimated future effect will only be a small fraction of what the real effect on total atmospheric thermal radiation recapture will in fact be if methane levels stay at 1800 (or go higher).: thus meaning for the entirety of that 100 years, it’s all methane. (The molecules being broken down thus being replaced so that the total concentration, and thus energy recapture potential and effect, stays far, far higher.)

For instance, if we use a 20 year GWP for estimating methane’s future global warming impact, the future impact will be considered far higher. Yet even over just a 20 year period a fairly high percentage of any methane originally released into the atmosphere has already broken down.

Knock the measuring period down to about 10 years, and the total heat energy re-capture (or “surface emitted thermal radiation absorption and re-radiation”), potential shoots up far far higher than 85 times the impact, gram for gram, than carbon dioxidem, even if all of it isn’t realized due to multiple capture of methane’s target wavelengths.

In short, when methane is looked at as methane – what it should be looked at in terms of assessing the impact of future atmospheric methane levels over time – the effect is far more profound than when looked at as only a short term gas projected out, based on today’s levels, and with the expectation that most of today’s methane won’t be methane for the great majority of the period:

Which, in turn, is great for assessing the impact of today’s methane levels alone. But it’s potentially the opposite for assessing the actual long term impact of total ongoing atmospheric methane levels and, though harder to project, what’s actually relevant here to gauge the impact of that methane: What methane will be over the next X years, not just what it is this moment.

And, again, as there is more carbon buried as methane in frozen but now beginning to thaw sea floor bottoms than already exists in the entire atmosphere (and many many hundreds of times more than exists as a carbon atom making up part of a molecule of methane), and likely a little over one and a half times that, give or take, on land based permafrost areas (which would emit as both carbon and methane), the issue is not just one of how much our farm raised ruminant animals chew cud, wetlands, landfills, gas leakage or fossil fuel extraction and transport, etc,; but at this point, more predominantly one of the ongoing march of increasing ocean temperatures and melting ice sheets, and the uncertain but potentially huge impact upon otherwise long frozen (i..e, sequestered) methane gas as well as additional carbon.

_______

Thus, a big increase in methane’s concentrations over time is potentially far more significant – due to the shorter shrift than carbon dioxide that methane usually gets, due to its smaller concentrations, and far shorter realistic lifespan – than might at first appear.

In other words, the average concentration of the gas over trailing time is what ultimately mattered. (Whatever net effect it was; even if most of this energy recapture effect that, along with the geogolically relevant increases in long term greenhouse gases that produce it essentially define the climate change challenge, has, so far gone into changing earth’s future climate impacting systems, and accumulating surface land, ice and ocean energy.)

But what the gas will be in the future, not what today’s gas alone will do, is what matters for the future. And thus average levels of the gas in the future will matter far more than methane effects typically projected based upon today’s levels  and methane’s high breakdown rate.

And this will be even more relevant – perhaps far more so – if there is ever a very large influx into the atmosphere over a shorter, or simply ongoing, period of time, and sufficient to have a fairly powerful short term amplifying heat recapture effect.**** [The reason for this seeming oversight is that climate change has been hard enough to illuminate to the public particularly in the face of sound bite news, and rampant information that as a matter of advocacy simply seeks to try and refute the issue, rather than – mistakes and all, in any random direction as part of the process of evaluating itself – simply try and objectively and dispassionately assess it, or just an extremely poor overall assessment of what risk ranges mean or the fact that that it’s risk ranges, not what will assuredly happen or that can somehow be exactly predicted (nearly impossible as that is) that is relevant to assessing this issue.]****

And, lo and behold — and barely touched on as we focus almost exclusively on air temperature and the enormously mistaken (if not flat out geo-physically ridiculous) “skeptic” idea that for climate change to be “real” or significant means we have to be able to (almost impossibly) predict the exact amount of short term average ambient air change in advance — there’s a fairly extensive risk of just such ongoing high, if not at some point significantly increasing, methane levels.

Given the enormous amounts of methane buried in shallow sea bed areas, as well as the enormous amounts of carbon buried in the northern hemisphere’s vast permafrost – much of which will be emitted as methane when and as our northern permafrost melts, and just as it is slowly starting to do – a large, ongoing and even crescendoing influx of methane over a fairly relevant period of geologic time, is a large possibility; while some ongoing and increasing total methane release from the impact of atmospheric change itself, rather than directly as a result of at this point controllable anthropogenic activities, is very likely.

And the large ongoing methane increase side of this equation is an even stronger possibility if, as many scientists project, there’s a short period of rapid geologic change as a result of the enormous and growing earth energy balance changes currently underway due to a massive and steady input of long lived heat energy trapping gaseous molecules into the atmosphere. Which input in turn – and in just a few hundred years, much of it just in the last 50 or so – has increased current concentrations of carbon dioxide alone to amounts likely not seen on earth in three million or more years.

And in an event of a rapid geologic climate shifting – which could happen at any time but becomes increasingly likely as our oceans continue to warm at a remarkably fast clip, and polar ice cap melt rates at both ends of the earth continue to accelerate – the rapid release of a lot of methane, with its powerful warming potential relative to carbon dioxide, would significantly amplify and extend any climate shifting process, perhaps even fundamentally re-write it.

This is something we’re not quite getting because our imaginations tend to be somewhat constrained by what we’re used to seeing, and we don’t quite integrate what a multi million year change to the long term molecular heat trapping property of the atmosphere, in a remarkably short geologic time period, really means in terms of earth’s shifting energy balance. (And as sites like this – now to nearly 300,000,000 page views, and overwhelming influence – and countless others seek to refute the very idea itself, to perpetuate an ideological, old school belief of non relevant atmospheric impact, under seeming guise of “reason”and an almost non stop onslaught of irrelevant, cherry picked, or issue misconstruing arguments and claims, all with enormous built in rhetoric.)  To us it’s still sort of “abstract.”

Massive change, well after the cause – underlying energy shifts – in what we can later see, won’t be so abstract.

Advertisements

Sky Rocketing Arctic Methane Levels Help Tell Part of the Much Bigger Story of Major Change

(Last updated March 6, 2016)

Lately, methane levels in the arctic have been spiking to unheard of high levels. What does this mean?

_______

We can tell from extensive ice core sampling that for at least the last 800,000 years, average ambient methane – or CH4 – levels apparently never rose above around 800 ppb (parts per billion), in the earth’s global atmosphere.

Yet in the modern industrial age – a pinprick of geologic time – average levels of this potent greenhouse gas have suddenly risen by an amount that’s more than double the highest concentrations recorded in at least 800,000 – i.e, not far from a million – years, and possibly longer.

And in the Arctic, where concentrations of late have been particularly high, last fall and again this past spring, methane levels have at times spiked an additional 800 ppb or more above that.

Update: Lately methane has been spiking even higher still, and Winter 2016 saw the previous highs not just beaten, but shattered, as NOAA’s METOP orbiting polar satellites in late February recorded a spike to a whopping 3096 parts per billion:

metop-methane

_______

Through a multitude of processes – enteric fermentation in ruminants (cows, camels, goats), landfills, energy production, etc., methane levels – from a geological perspective – have skyrocketed.

Pay close attention to the left side of the EPA chart below, and note how from a geologic perspective methane levels (as with CO2), have shot straight up – suddenly going frrom around 700 -750 ppb, to over 1800.

Given methane’s fairly rapid rate of breakdown, it leveled off near 1800 ppb in the atmosphere in the very early 2000s. (To keep levels high, let alone continue to increase it, requires a lot of ongoing net emissions, since methane’s half life is only around 6 to 9 years.) But since 2007, levels have been slightly increasing, and are currently a little over 1800 ppb. (As of Winter 2016, average ambient atmospheric methane levels are around 1830 ppb – which given methane’s fairly rapid breakdown, means large – even increasing total amounts – are still being emitted. And in the arctic and surrounding northern polar latitudes, it appears the surface of the earth’s methane potential is just starting to be scratched – see below .)

Methane – It’s History, and What’s Happened Now

About 2000 years ago – or 1/400th of an 800,000 year period – levels of this potent greenhouse gas were a little bit above 600 ppb, and, in part through human activity ( rice cultivation -which is a form of wetlands, which are otherwise large natural emitters of methane -increasing domestication of ruminant animals, etc.) that rate “crept up” to around 700 ppb around the year 1600. (Which is also roughly around the height of Western European deforestation, when all but an estimated 5-15% of Western Europe forests had been cleared.)

Total atmospheric methane then tailed off slightly, then started to creep up a little faster to right around the start of the industrial revolution, where it was nearing 800, which is slightly above its highest point for more than the last three quarter million years. (Graph by EPA):

GHGConc2000-large

Then, particularly as we moved into the 20th century, from a geologic perspective levels of this gas essentially started to shoot straight up, comprising a rise from around 700 – 800 ppb around the years 1800 – 1850 – and just about the highest methane had also ever been over the past 800,000 years – to a concentration a little over 1800 ppb today. With again, similar to the rapid rise in CO2 over what is also a mere geologic moment – the far more significant part of that rise occurring over an even shorter time period. .

In other words, until recently, as far as we can tell from ice core sampling, the earth over the past 800,000 years had not seen an ambient atmospheric methane concentration level above the high 700s.

Yet today ambient global methane levels stand at a little over 1800 ppb. And in the arctic this past October, methane levels shot up to an amount more than 800 ppb over that, as atmospheric concentrations of methane over the arctic region reached 2666 ppb.

Again, this also occurred this past spring (when they actually went up to 2845, almost 200 ppb higher than in the fall), and, although a little lower, in early fall of 2013 a well, when methane levels spiked to over 2500 ppb in the arctic.

Why is Methane Seemingly Starting to Move Upward Again, Particularly in the Arctic Region

Additional arctic methane spiking happens when northern permafrost areas start to slowly melt. While seemingly minor right now, the issue isn’t so minor, as permafrost covers about 24% of the northern hemisphere’s total land mass, and it’s slowly starting to change. (In fact, in one of the many indices of “hidden” changes beyond what we simply feel when we open a window, in many shallow frozen and partially frozen northern permafrost areas, the actual ground just below the permafrost has warmed more, sometimes considerably more, than the ambient air just above the surface of the frozen area. Which is kind of remarkable when you think about it, and bodes a lot more long term change than mere, “ephemeral” and always changing air temperatures.)

And, more fitting for a movie than a science piece, it also happens when shallow sea bed areas – essentially frozen solid for hundreds of thousands of years if not more – warm up and thaw sufficiently to release methane that’s otherwise tightly bound up in copious amounts in frozen clathrates along much of the upper ocean shelf sea bed floor, leading to the eruption of methane gas.

When methane bubbles up, it’s sexier, or eerier, than the simple emission of carbon dioxide into the air: It erupts out of the sea bed bottom and, lacking buoyancy, if enough of it displaces water on its way up, can literally cause a ship to sink straight down in what would appear to the outside world as an unsolved mystery.

This is interesting in small amounts (though not for any ship that happens to be in the wrong place at the wrong time).

But it’s also something that in large amounts will have a fantastic impact upon our world, due to the powerful heat energy absorbing properties of methane in comparison with the far weaker carbon dioxide molecule and – along the massive amount of carbon “stored” in the northern land permafrost – the huge quantities of methane on our sea bed floors that after long epochs of geologic time, and not at all “coincidentally,” are now suddenly starting to thaw.

How is this thawing happening?

While there is great variability from year to year, each year, on average, less and less arctic sea ice – which in the past has dwindled during late summers somewhat but for the most part essentially remained year round – exists by late summer in the northern polar arctic region.

In fact, over the past several decades, summer arctic sea ice extent has been decreasing by a little over 13% per decade.

This change is critical. Darker ocean water absorbs a much broader spectrum of incoming solar radiation – for the same reason that when you wear a dark shirt in the sunlight, you are warmer than when you wear a white shirt.

Reflected solar radiation doesn’t have nearly the same effect as absorbed solar radiation.

Solar radiation is mainly short wave radiation, and atmospheric greenhouse gases predominantly absorb and re-rediate medium to long wave length radiation. But when solar radiation is instead absorbed, that heat energy isn’t reflected back into the atmosphere (where in turn it is largely unmolested by the greenhouse gas molecules that otherwise keep our planet warm), but is transferred into the absorbing body. Yours and your clothes if you are wearing dark clothes, for instance. Or a dark macadam surface. Etc.

Additionally, when some of that heat is given off by the absorbing body or earth surface or water surface area, it is emitted as thermal radiation, not solar radiation.

Although warm matter can also convey heat via conduction, the passing of heat via molecules to cooler, neighboring molecules – though here directly to molecules of gas, not solids as is the normal definition of conduction – as well as by convection, which is the passing of molecular heat from or to a gas or liquid, and, via conduction to gases such as air, which then frequently results in air currents that then transfer that that heat outward – as for example you may feel when sitting near a fireplace.

Thermal radiation, on the other hand, is in the medium to long wave radiation form: This is the radiation wavelength range absorbed and re radiated by greenhouse gases. While again, the short wave solar radiation that is incoming from the sun, and then to some extent reflected back out by various surfaces, is essentially not absorbed and re radiated.

The measure of a surface’s reflectivity is its albedo. The albedo of open ocean water is low, and in high latitudes it’s as as low as 10%: Meaning that almost all of the incoming solar radiation is absorbed.

Contrast that with a nice solid layer of light colored and highly reflective sea ice sitting atop the arctic waters instead – where most of the incoming solar radiation is reflected.

Snow and sea ice have a very high albedo. This is in part why large northern, southern, and until recently mainly high mountainous but much smaller ice sheets, tend to perpetuate local climate conditions, and remain relatively stable.

Although even that is now changing with respect to the very large thick ice sheets that sit atop the land at both our northern and southern polar regions: Mainly Greenland in the north (the actual area surrounding the north pole itself is all ocean water), and Antarctica – a continent that actually sits atop the pole – in the south.

Both regions are experiencing a net loss of total glacial ice; and, far more tellingly, both are experiencing it an accelerating rate, with even East Antarctica – which until very recently was thought to be extremely stable – despite ongoing atmosphere and ocean changes – getting in on the act.

This increasing rate of acceleration is not just relevant in the Antarctic, where as noted above a part of the ice sheet is now considered on a pathway of unstoppable loss, but particularly in the smaller – and thus less stable – and not quite as “polar” Greenland area. (The north pole region is open water, which used to be mainly frozen year round, but while there is wild variation from year to year, long term that is changing, and also at a fairly rapid geological clip, and leaving more and move summer water open to absorb instead of reflect the summertime solar radiation, while the south pole region is covered by the frozen but now starting to in part thaw continent of Antarctica.)

Greenland likely melted less than a million years ago, and, with far more changes in energy input into our system than occurred less than a million years ago, is increasingly likely to again.

This is an area that contains enough ice to raise the world ocean not by the few feet that the IPCC – tending to leave out many considerations on which there is still a wide range of uncertainty – usually tosses out; but by over 20 feet. Greenland, like West Antarctica, is also starting to see ice sheet melt at an accelerating rate: So much so that rivers are now forming along its surface to speed away melting snow and ice, while also hastening and accelerating the melting process, since water itself – and moving water even more so – is a melting accelerant.

And while we conjecture, we really don’t know just how fast melt acceleration can or will occur with a globe that is accumulating net long term heat energy – and one that for very specific and still even rapidly increasing reasons – doing so at a geologically breakneck, and increasing, pace.

For instance, as the World Meteorological Organization pointed out in its last Statement on the Status of the Global Climate (emphasis added):

93 per cent of the excess heat trapped in the Earth system between 1971 and 2010 was taken up by the ocean. From around 1980 to 2000, the ocean gained about 50 zettajoules [10 to the 21st power] of heat. Between 2000 and 2013, it added about three times that amount.

In other words, in the thirteen years between 2000 and 2013, our ocean gained more than 3 times the energy that it did in the 20 years from 1980 to 2000.

There’s presently a sort of fiction in even some climate change concerned circles that this is “absorbed heat” that mitigates the effect of “climate change.” We’ll get into that in another post (as well as below when looking at methane clathrate eruptions):

But essentially the heat retained by the ocean is simply a reflection of excess atmospheric heat energy over the earth’s surface (mainly ocean, as water can absorb a great deal of heat, and do so more easily than land surfaces, which stay fairly insulated very close to the surface). This in turn becomes part of our climate system over time, and reflects a key part of what drives and directly affects what drives our climate.

For instance, extra heat is not “hidden” in oceans, it affects those oceans and how the oceans ultimately affect the world, through a multitude of processes.One of which is warming sea columns in shallower ocean areas, warming up long frozen sea bed floors containing large amount of previously well contained or “trapped” methane.

The insulating Process 

The earth’s climate is driven by the stabilizing and moderating forces of it’s geo-physiology – its oceans ice caps and, secondarily, attendant global patterns of tendencies. (Such as ocean currents, etc. Also note that not only do the polar ice caps play a key role in moderating and generally stabilizing earth’s temperatures, but even relatively minor changes in them can have a very large impact upon climatic conditions.)

And it’s driven more directly and immediately, of course, by the source of almost all energy: The sun, and then the amount of solar radiation, transformed after absorption into thermal radiation upon release from any surface area of a warmed body, that is then re-absorbed and re-radiated by the total greenhouse gases in our lower atmosphere, at which is incoming, both originally, and then again prevented from rom esIncoming energy, in the meantime, is a combination of the sun, which of course is what it is; and less directly, the level of atmospheric greenhouse gases, which absorb and re radiate heat.

These infamous greenhouse gases (though the term is sometimes sloppily used synonymously with carbon dioxide) are already at massively high levels for our current epoch – already higher in the case of CO2 alone  than in the past few million years. (That measurement also doesn’t even take into account large increases in methane, nitrous oxides, and fluorocarbons which when added in terms of each’s “global warming potential equivalent” or thermal radiation absorption and re-radiation properties relative to a unit of carbon dioxide, add considerably more to the total long term molecular atmospheric increase in re captured energy.)

And, through activities that we could curtail, alter, or transform (mainly multiple traditional agricultural and energy practices), these levels are still skyrocketing. That is, from a geologic perspective, as noted at the outset, they are essentially shooting straight up.

These greenhouses gases also include water vapor, the most important greenhouse gas at any one time, and one which we’re not affecting directly. But water vapor is not long lived, but ephemeral. Thus it’s not a driver of long term climate, but a response to it, and a part of weather itself.  With a warming world, the atmosphere will likely lead to the evaporation of, and retain, more moisture.

Since it can hold more moisture, this might mean increased precipitation intensities and changing patterns, one of the most likely long term responses to our ongoing change – although exactly how precipitation patterns will change is unclear. (What is clear is that our current fauna and flora as well as river systems, and current anthropogenic agricultural areas and systems, evolved under the general global and regional patterns of the past few million and in particular past few hundred thousand years.)

If it means more precipitation overall, much of this could come in less frequent but much more intense precipitation events. Though more precipitation overall would be far more welcome than less overall in an otherwise still warming world, it would also likely mean an amplification of the ongoing “greenhouse” affect, since it would mean an increase in average total atmospheric water vapor levels.

While water vapor acts as an atmospheric reflective agent during the day – increasing earth’s overall albedo by reflecting a lot of sunlight right back up before it even penetrates through the atmosphere down to the ground, it also acts as a powerful greenhouse gas simply due to the massive concentrations relative to the other greenhouse gases, “trapping” in thermally radiated heat.

Both of these phenomenon – increased heat retention through energy re absorption and re-radiation (“re-capture”) , as well as increased solar radiation reflectivity – are at play during the day. At night, only the powerful greenhouse effect of increased water vapor is at play, leading to an overall further amplifying effect if water vapor levels are generally increased.

On the other hand – although so far the evidence doesn’t seem to support this being the case, but almost anything could change in terms of precipitation patterns as we move forward – if water vapor decreases despite a higher overall rate of evaporation due to warmer temperatures, this would heavily exacerbate what is likely to be one of the most fundamental problems caused by our change set of climatic conditions as it is: Drought.

Remember, even with increased precipitation, with more water vapor being held in the atmosphere, as well as shifting regional patterns, regions used to receiving rainfall could easily experience huge shifts and become regions that receive almost no rainfall at all (and vice versa) whereas many areas could receive the same or even more rainfall, but with precipitation events both far more intense, yet less frequent, etc, with thus far more of that precipitation lost to runoff under our current evolved world, including its rivers, topsoils, and root structures – as well as intensified flooding.

Drought and changing precipitation patterns, particularly for the poorer areas of the globe, is likely to be one of the most directly devastating affects of ongoing climate “change,” and while a lessening of some of the greenhouse effect from reduced water vapor would be welcome in that sense, a decrease in overall precipitation along with changed patterns, likely increases precipitation fall intensities, and overall warming would be a particularly negative, possibly – at least in terms of what we are used to (and have come to rely upon) right now – mind blowingly devastating development.

So while water vapor is a bit of wild card, it’s not really a good wild card in either direction. And there is a fundamental reason for this. We evolved, and the species we relied upon evolved, under the conditions of the past few million years. And those conditions are changing.

A Look At the Bigger Picture

While both polar glacial ice regions are decreasing in total ice mass, and far more notably, at an accelerating rate, the smaller, “less” stable Greenland ice sheets in particular are starting to show increasing signs of marked change. And in just the last five years – a remarkably short period of time – the extent of net melt loss from both polar regions together has doubled. In the apt words of Angelika Humbert from Germany’s Alfred Wegener Institute, this is an “incredible” amount.

(Do a little math. While there is no reason to expect this (or, for that matter, not expect it), if that pattern were to continue – i.e. regardless of size just keep doubling the loss every five years – it wouldn’t be long before a good portion of Florida, and many other areas, would be completely underwater. In the U.S. for example, you might want to start investing in Arizona “beachfront” property, now.)

Greenland is also more conducive to easy climatic change than the vastly larger and colder antarctic region, as again even some 400,000 to 800,00 years ago, for a time it was not a large sheet of ice, but instead covered by fauna and flora; and the world’s oceans, correspondingly, were much higher.

Whatever happened less than a million years ago, also keep in mind that the level of energy alteration we are currently undergoing is already on a multi million year level scale, and it is also one that, simultaneously, is still increasing. Fast. And from a geologic perspective, extraordinarily fast.

This rate of change is something we tend to confuse with our own sense of time; thinking that effects upon this enormous, structured system would be near instantaneous, when they will shift and accelerate, even lurch, over longer and largely unpredictable periods of time, as the net energy balance of the earth lower atmosphere continues to grow, and as these underlying and normally stable structural ecological systems – such as our ocean, ice sheets, and others – start to change over time at an accelerating rate.

And they will do so in most cases, with some sort of positive feedback. Such as, for instance, in the case of warming shallow ocean region water columns, which are showing very early signs, again, of releasing long frozen solid methane clathrate deposits up into the surrounding ocean waters, where they bubble up, and release out into the air. Where, in turn, they add to the process of increasing net energy retention (prompting yet more melting, etc), even further.

(You might think it’s “odd” that things happen to be reinforcing, but this is because the two most critical elements in all of this often get completely overlooked. 1) This entire phenomenon represents what is in effect an external, or “forced” change in energy input – from something outside the natural system – namely, in this case our alteration of it. 2) It is geologically massive.)

In the arctic region where these methane spikes are seemingly becoming more prominent, the summer sea ice extent continues to decline, and there is a massive change in the surface albedo of these summer waters – that is, as the surface changes from the high reflectivity of an extensive ice coverage area, to the extremely low reflectivity of dark colored, high latitude open ocean.

And remember, this matters, since the ice depletion, of course, is occurring in summer when the north pole is angled toward the sun and receives its rays.

While at the same time, the 1% a year or so increase in southern polar sea ice extent, that is probably due largely to an increase in the Southern Annular Mode wind patterns pushing more of the ice northward and making room for growth, as well as concomitant near freezing upper surface water insulation from melting glacial run off is during the southern hemisphere winter months.

So with increasingly less arctic sea ice, the arctic ocean sometimes gets a lot warmer. And this in turn leads to some interesting things that sound like they are on the cutting edge of science fiction, but that are very real.

Namely, this eruption, or thawing, of methane clathrates that exist in large quantities amounts on sea bed floor areas, and that contain a massive amount of this long “contained” methane gas. (It is not that clathrates never released before. It is that the process has likely moved from a relative rarity in terms of occurrence and amount – and thus insignificant – to one that is increasingly significant, just as would be expected if shallow ocean bed areas – which generally tend to be very stable in temperature but are not that far below freezing temperature – were to warm.)

Current estimates of the amount of methane so “trapped,” most of it in shallower areas more susceptible to thawing, have come down; as it has been discovered that the far deeper ocean floor areas contain very little of it. (These far deeper areas are also far less susceptible to thawing anyway, and in fact some studies have suggested that some of the deeper ocean waters have not warmed at all, while other deep ocean parts have, but these areas are hard to gauge, since they’re not easily accessible.)

Yet the estimates still average out to more than the total amount of carbon (about 750-800 gigatonnes, or a little under 3000 gigatonnes of actual carbon dioxide) in our global entire atmosphere.

That’s a lot. But even more relevantly, methane gas is a much more potent absorbent of thermal radiation than carbon dioxide. This causes a lot of confusion and assumptions, since methane breaks down into carbon dioxide, with a half life typically of somewhere around 7 or 8 years.

This means that the longer the time frame, the lower the overall potency of methane in terms of its Global Warming Potential equivalent. (Or “GWPe” – simply a measure of the warming capacity of a particular gas, relative to the baseline warming potential of the most common greenhouse gas, carbon dioxide; which itself is very prevalent in the atmosphere but has a fairly weak warming affect per molecule, expressed as a GWP of “1.”)

Typically, methane is expressed in terms of a GWP over a term of 100 years, over which it has a value of about 23 or so.

That is, each unit of mass of methane, first as methane and then as breakdown products, including carbon dioxide, will have about 23 times the effect, in terms of total thermal radiation absorption and re radiation, as each unit of mass of carbon dioxide, over a 100 year period.

Over a shorter time period, which means that for a higher percentage of the total time any particular molecule of methane still exists as methane – where it’s vastly more effective at “trapping” heat than carbon dioxide – the GWP again is far higher.

But it’s not, as some articles may inadvertently lead you to believe, that methane is “23 times more effective at trapping heat.” (It actually a few hundred times more effective, but again, it doesn’t last very long).

It’s that over X period of time, a unit of methane will average out to have an effect that is about Y times as effective at trapping and re radiating thermal radiation energy, as the same unit mass of carbon dioxide.

But, just for example, over a century period a release of 10 gigatonnes of methane gas (a very large amount), would essentially have a similar effect, averaged out, of about or up to 230 or so gigatonnes of carbon dioxide over about a hundred years, and thereafter have around the same ongoing effect as carbon dioxide, since that is essentially what most of it will ultimately be. (A tonne is a metric ton, or about 2200 pounds. A gigatonne is one billion tonnes, or about 2,200,000,000,000 pounds.)

Notice also, though there’s little in the way of information that would tend to support or refute such an idea at his point, that if very large scale sea bottom warming were to occur over a short period of time, and thus massive amounts of methane released, the higher warming intensity of methane over a shorter term time scale would become more relevant – particularly if it was released in significant enough quantities to have a shorter term accelerating impact upon other climate driving conditions.

This same possibility also exists with respect to the vast northern permafrost; which when it melts will release some of its vast trapped carbon in the form of methane, and not just carbon dioxide, as well.

Enormous releases over, say, a 10 to 20 year period (or high enough sustained releases to keep the overall level much higher over a longer period) would make the relevance of methane’s higher GWP over that shorter period much more relevant, since the combined short term affect (or longer if suddenly much higher levels maintain through high sustained release), could quickly accelerate air temperature warming, and then further amplify ice melting rates. Over a 20 year period for instance, methane again has a much higher global warming potential equivalent (about 72 to 90.) than the 23 or so typically used for the gas, and based on a 100 year projection.

Thus an explosion into the air over say 20 years, of just a gigatonne of methane, would have up to the same short term affect of around 70 or more gigatonnes of carbon dioxide. 10 gigatonnes would have up to the effect of over 700 gigatonnes of carbon dioxide – near the total amount already in our atmosphere.

It’s not quite that simple, since the atmosphere is a balance, and some excess gas will be absorbed into the carbon cycle. But as methane and not carbon dioxide, and over a shorter time frame, this is less relevant – and huge influxes in particular in a short time also allow for less time and room for quick integration  into the total global system, even as some of the methane starts to break down after several years; so a big spike in methane releases would have an extremely powerful and fairly rapid amplifying energy effect, on top of the level of permafrost melt or sea bottom floor melting that led to the release to begin with.

And it would be pretty wild, which we still don’t seem to be fully grasping.

_______

Remember, aside from what are in the short term uncontrollable geologic emissions created by an increasingly altering climate, if we take steps to reduce methane emissions, we can reduce atmospheric levels of it pretty quickly, since it lasts as methane for only a short period of time.

And, barring an acceleration in “natural” (ir climate change induced) net methane releases, because of its fairly short half life it takes a continuation of very high emission levels just to maintain current high levels.

But levels of the gas aren’t going down.

And in the earlier 2000s, methane levels, albeit very high, seemed to stabilize and even slightly decrease, and since – despite if anything a likely cessation in total net emission increases, or possibly a small decrease – have been slightly increasing.

Once again, take a look at the EPA graph from above.  And the more geological time oriented chart on the left:

Now in the context of some of this additional information, notice again and almost identical in general pattern to an 800,000 year graph of atmospheric CO2 – that until recently – just about the start of the industrial revolution or thereabouts –  atmospheric methane levels stayed relatively stable over long periods of time, varying between 450 to 700 ppb for most of the time covering almost the last one million years. And never rising above about 780 ppb. (And then essentially, from a geological perspective, as with carbon dioxide, they have shot straight up.)

With current methane levels at a little over 1800 ppb, a spike in a portion of the arctic atmosphere to over 2600 ppb (and now over 2800 ppb) is significant.

But it is what is happening more directly in the arctic system itself that is even more significant, and also fairly interesting. And, as with almost all aspects of the phenomenon known as climate change, here is where again the issue of a warming globe – not just a warming atmosphere, but far more relevantly, a warming globe – becomes very relevant. As does the issue of an ongoing yearly average decrease in arctic sea ice extent; which, on average, is leaving less and less ice in the late summer and early autumn months to cover up the otherwise dark, solar radiation absorbing arctic ocean relevant.

Robert Scribbler explains:

Imagine, for a moment, the darkened and newly liberated ocean surface waters of the Kara, Laptev, and East Siberian Seas of the early 21st Century Anthropocene Summer.

Where white, reflective ice existed before, now only dark blue heat-absorbing ocean water remains. During summer time, these newly ice-free waters absorb a far greater portion of the sun’s energy as it contacts the ocean surface. This higher heat absorption rate is enough to push local sea surface temperature anomalies into the range of 4-7 C above average…

Some of the excess heat penetrates deep into the water column — telegraphing abnormal warmth to as far as 50 meters below the surface. The extra heat is enough to contact near-shore and shallow water deposits of frozen methane on the sea-bed. These deposits — weakened during the long warmth of the Holocene — are now delivered a dose of heat they haven’t experienced in hundreds of thousands or perhaps millions of years. Some of these deposits weaken, releasing a portion of their methane stores into the surrounding oceans which, in turn, disgorges a fraction of this load into the atmosphere.

This, along with the melting ice both on land and on sea, in polar regions and in permafrost regions (which themselves hold nearly twice as much carbon as is currently found in the entire atmosphere – some of which, again, will also emit as methane as the permafrost melts) and the increasingly warming ocean – also again, at a startlingly fast rate – is one of the many important aspects of this complex, non linear, dynamic, and system shifting process of climate change that are largely being overlooked in the popular discussion and media, as the issue gets oversimplified by a near obsessive, and very misleading, focus on air temperatures.

Although we focus on air temperatures for a practical reason – we can relate directly to air temperatures, and we even, literally “feel” it – this only tells a small part, and often a very misleading part, of the relevant story.

The bigger story is one of great change, and it is being told not just in the atmospheric record that reflects our atmosphere’s now multi million year long term molecular heat energy re absorption property, but increasing, in the tell tale signs of a changing, if not slowly rumbling and even now occasionally erupting, earth.

Update:  More information on methane, and why it’s future impact may be greatly underestimated, is found here.

What Is Climate Change Anyway, and Why Is it Being Underestimated

(Last updated 8-15-15)

What is climate change?

This often misunderstood phrase refers not just to the idea of our climate “changing,” but more importantly to the phenomenon driving it, and the real problem itself: Namely, the fact that we’ve now altered the long term heat energy trapping property of our atmosphere to a degree not seen on earth in probably three million or more years (and likely a lot more, particularly when N2O, CH4, and CFCs are added to the mix); along with the fact that we continue to alter our atmosphere at geologically breakneck speed – remarkably adding to and compounding the challenge we already face.

The ultimate problem presented by climate change is also a matter of the ranges of risk of increasing radical future climatic shifting, in response to the ongoing, and cumulative effect of an already changed atmosphere and its accumulating impact upon the heat energy balance of the earth – and risk management. (A classic and insufficiently covered example of just such potentially compounding, and even strong feedback threshold approaching, effect, is here.)

These risks, along with the likely ranges of change, become increasingly amplified as we make more profound systemic changes to our earth/atmosphere system.

And effectively managing and assessing them means to not just focus on what will assuredly happen – as most of the focus has been disproportionately placed – but also on the ranges (plural) of possibilities, times their likely chances, in order to get a better feel for the threat, and make better overall strategic decisions in response.

We’re essentially not doing this. For example, while there’s likely to be some significant change anyway, if we don’t change there will almost assuredly be what we consider “radical” climatic shifts. (See below as to why this is likely.) And at the very least there will be a much higher risk range – both in terms of the level of effects, and the increase in probabilities of more dramatic ones.

And since our atmosphere is a balance, mitigating emissions can not only retard net long term atmospheric concentration growth, it can also help to reduce total concentrations to levels more in balance with at least the last few million years or less, and thus lower ongoing atmospheric thermal reabsorption cacpacity from what it is presently, to at least soften or flatten the overall cumulative effect as we go forward, and lower amplifying feedbacks. (Such as, again, this one, which may make controlling a greatly underestimated greenhouse gas, almost impossible.)

Ultimately, radical shifting, at least in terms of measurable costs, might amount to a few hundred trillion dollars. Or perhaps it might be a little less. (A few hundred trillion dollars may seem like a bit of a gargantuan number, and in part is just used here for an example. But also hold off evaluation of that number itself until you finish this piece.)

If the chances of severe shifting –  again just by way of example – are 60%, then, simplified, the “cost” is .6(200 trillion dollars) + .4(average of other “we get lucky” outcome costs – say 40 trillion)….or around 135-140 trillion.

Again, by today’s standards, that’s a huge number, but we don’t really know. Just for starters, and representing only a releative micro fraction of the problem, turning major parts of, say, FL, LA, NJ, RI & DE in the U.S. alone into sea bed, would be extraordinarily, almost unfathomably, “costly.” And it’s an almost assured (but again, small) part of the ultimate result of this ongoing accumulation of increased net energy, barring sensible remedial action. (Again, see below as to why.)

Just by way of example, Greenland melting, and doing so increasingly quickly, is geologically not a big deal, having probably melted in the last half a million years alone. Yet we’re still very constrained by our limited imagination – as well as the fact that we evolved in the world as it is and, for the most part, has been the past million or two years – as to what’s “geologically normal”; once again failing to grasp just what it means to change the long term energy trapping properties of the atmosphere to levels not seen on earth in many millions of years, and continue to skyrocket them upwards, and “think” it’s okay just because “oh, right now it’s only a little warmer outside,” and the north and south poles in this mere geologic flash of time are currently still essentially white.

In terms of trying to “assess” this, we can also variously change the range of numbers based upon the best approximations of various ranges and likelihoods of harm. And again, do so just to get an idea, approximation, or better concept, of some – and still not all – of the reasonable ranges of actual risks.

But instead we have silly and incredibly presumptive super long term macro economic projections by some economists: notably climate change “skeptics,” that make remarkably ridiculous presumptions about the rate and value of growth decades from now based upon perceived changes in energy sources, while putting these up against essentially trivialized future “climate change” earth system impacts, which in turn reflect an extremely poor, or simply terribly biased, comprehension of the relevant science. (Perhaps the most well known is Bjorn Lomborg, who irony of ironies is hailed as both a visionary, and practical thinker.)

But not only is this approach mistaken on both ends – presuming a rate of or even change in rate of growth over multiple decades from changing energy sources is so wildly presumptive as to be idiotic, although dressed up in numbers and nice economic jargon it sounds good – but given the value of avoiding cataclysmally negative change, there is also probably a valid premium cost for disaster or outright global catastrophe for some regions, and hence some additional value in avoiding or lowering any reasonable chance of that. (This is for the same basic reason, simplified, that we have most insurance in the first place, even though in pure dollars alone it almost never makes any economic sense to do.)

And, most relevantly of all, but seemingly the hardest to sensibly integrate into decision making, there are heavy intangible, non-measurable costs of trivial, non-sensible, or no action. These probably have no comparison in terms of pure economic growth, since these immeasurable – or really, non measurable – costs (including upon health) may affect basic human utility or “happiness,” whereas continued growth in GDP over time isn’t directly correlated with happiness and utility. (Otherwise, in comparison with only 50 years ago, we’d all be past bursting at the seems with overall utility and happiness in first world countries, and getting happier by the year as we “grow” and increase the speed at which our “widgets” and gadgets perform, as well as what they can do.)

So called practical visionaries like Lomborg miss this concept entirely – among others. And aside from making absurd economic assumptions well into the future, and then treating the projected results of economic “value” for decades hence as ludicrously precise and authoritative figures (which by giving them this patina of authority and seeming credibility makes them worse than no numbers at all), treat all of today’s dollars – discounted at a reasonable future rate – as equal arbiters of true human value over time. Which is about as visionary (or, when it comes to grand scale long term global thinking, ultimately practical) as tree moss.

___________

In terms of the earth’s increasing energy balance, much of the change occurring is also seemingly being masked because our earth system is a “relatively” stable system. That is, it is kept in check by massive ice sheets at both ends of the world, and relatively temperate oceans (see below), with the key being on the word “relatively.” It is also one currently in an ice age. This (along with what had been lower atmospheric greenhouse gas levels) has been keeping our world moderately temperate; and, by retaining an enormous amount of the world’s water locked up in massive, historically stable glaciers, keeping oceans from rising and turning a decent sized portion of all seven continents into sea bottom.

But largely hidden from our eyes – yet not those of scientists who intensely study this – our earth’s system is also starting to show early signs of major, and very significant changes, and, even more relevantly, accelerating changes.

For example: Most of the increases in absorbed atmospheric energy are going into heating our world ocean, not immediate air temperature increases. If this wasn’t the case, air temperature would be shooting up even faster than it is, and long term, that rate of surface air temperature increase is already significant.

Adding even further to the significance of the lagging, long term air temperature trend yet, a preliminary assessment shows that 2014 globally just became the hottest year on record. (And based upon 2014 monthly data, NASA, NOAA, and HadCRU temperature records – the three other major global temperature measuring systems – will likely back this up – NASA and NOAA already have officially. The 3 hottest years on record have now all occurred in the past 5 years, even with massive amounts of heat falling below the surface of the ocean, where it is severely changing the longer term, climate driving, energy balance of this earth.)

And that rate of ocean heat accumulation is accelerating.

Not only that, but the rate of change in major parts of the ocean not only may be faster than in the past ten thousand years, but appears to be several times faster for significant parts of the ocean than at any point in the past ten thousand years.

The first 2014 hottest year on record article just linked to above, incidentally, is typical, in that its statement that “climate scientists expect the Earth to get hotter over time so long as humans keeping adding greenhouse gases...” is likely very mistaken. It will probably get warmer either way, just a lot less if we stop now:

This is because the change in the heat “trapping” property of the atmosphere that has already taken place is slowly (or maybe, increasingly, not so slowly) changing fundamental earth systems that affect long term climate, and which even with a further unchanged atmosphere, will still continue to change these fundamental earth systems and alter the overall basic energy balance of the earth until a new stases is reached under the current general level (but already massively geologically raised) of atmospheric greenhouse gases.

But by sensibly acting (which so far we haven’t in the least), the overall ultimate level of climatic change may be a lot less. And the difference – between continuing to add a lot more to the net energy absorbing and re radiating property of the atmosphere, or instead transforming over to what some might reasonably suggest to be a much smarter way of doing things – may be between what will be a bit of an unwanted adventure (for some, while still a massive struggle and excessive hardship for much of the world’s poor and several disaffected regions and peoples); and what will largely define mankind’s future in a way that will be seen as the great modern event, and mistake, of mankind.

Sure, we have hatred and wars and religious extremism leading to terrorism. But nobody really has any clear answers for those problems yet.

Climate change on the other hand, even if it is a complex issue, does have a pretty straightforward answer: Stop altering the long term chemical composition of the atmosphere at this point; and if we’re worried about transitioning economic growth, put our minds and ingenuity and market genius into coming up with ways to do so in the best way possible.

But it is something we can shift by simply deciding to do it and realizing we don’t need fossil fuels to survive well. Particularly since there are many other ways to get energy. (Far more, and far more efficiently, when and if we change the market dynamics that heavily subsidizes fossil fuels – both directly, and far more indirectly by failing to account for any of the massive negative cumulative external effect through fossil fuels’ continued use. This massive albeit indirect subsidization causes their market integrated cost to be a small fraction of their “real” costs or harm, so in the long run the market is heavily balanced away from far more productive practices and processes, and and heavily towards far less ones.)

And it is something we can shift by simply deciding to do it, and realizing we don’t need fossil fuels to survive well, since there are other ways to get energy – particularly as almost all of these ways involve work, industry and innovation.

These are all things which are part of economic growth, and help build economic growth and an “economy” long term just as surely as would the few extra widgets which – not making any transition to smarter energies – we could expect over the short term but just at far far greater, if hidden, cumulative harm.

Of course climate change refuters argue otherwise. Although take very careful note of the fact that climate change refuters almost to a person argue passionately that continued use of fossil fuels are critical to the well being of mankind.

Notice this oddity – and let it sink in. That is, the scientific issue of whether or not the phenomenon known as climate change is real and significant is completely unrelated to the issue of whether fossil fuels are critical to the well being of mankind. One may believe the latter, but that logically has nothing to do with the former.

Yet, almost all climate change refuters – those who say climate change itself is not very relevant or not even real – believe it; suggesting that again, something beyond objective assessment, even though it is often done under the self reinforcing guise of objective assessment (and “better” science than the world’s leading climate scientists), is driving a great deal of climate change refutation.

This fealty to fossil fuels is also preventing us from assessing the issue in a practical matter, under the false guise of “practicality,” when assessment of the science – what we’re actually doing to our earth and what it means – requires a complete removal from the political ramifications of any conclusion. And which is what we should be debating and discussing.

And in that debate as well, it is key to consider that in the long run what matters is economic growth; not that we grow in the way we “were used to” or that necessarily despoils our land, air, and health just to accomplish it, and that building different energy systems and creating market motivation toward doing so and changing past patterns, is as valid a form of growth as any other kind.

If it is a form that is also consistent with persona choice, but that better protects the perhaps reasonably inalienable rights to clean air, water and a relatively stable climate for ourselves and in particular our progeny, and doesn’t slowly destroy the world we have built up and half or more of the earth’s species along with it, even better. (Note, it’s not that a radically changed climate is bad. It’s that a radical change combined with the geological speed of it – upon even an advanced species that evolved, and built under the prior set of conditions, precipitation patterns, and ocean levels – is bad for us and many species;  including many we rely upon, and others, simply because we’re the “smartest” of the species, that we should be protecting, not wiping out.)

___________

There are several more key changes as a result of this massive long term energy absorbing and re radiating property of our atmosphere, but the most interesting (and likely relevant) ones involves the beginning of change to the massive amount of ice on the globe – stabilizing temperatures, and affecting earth’s key albedo, as we’ll see below.

The ice sheets at each end of the earth are now melting, and the rate of Greenland’s melt is now five fold what it was in the 90s. This again, although Greenland is of course essentially still intact, is a massive rate of acceleration, over a very short geologic time frame. And very recent studies suggest that Greenland may be melting faster than previously thought possible. (Also, with rivers now racing through the still largely white and massive surface of Greenland, the pace is quickening still, as water – moving water even more – is by far the most effective ongoing accelerator of melt.)

Not only are glaciers now melting, but the melt rate in the relevant portion of the Antarctic – the South now – has also tripled in the past ten years. This is also a massive rate of acceleration. And the loss of a significant portion of the West Antarctic Ice Sheet is now already considered likely irreversible.

Widespread methane leakage and eruption from the Atlantic sea bed floor is starting to appear, and along with beginning melt from warming permafrost areas, and warming arctic sea columns, methane eruptions are now starting to lead to tremendous regional spikes in atmospheric area methane levels.

But it’s also sometimes suggested that we can’t do anything about climate change now because it’s “too late.” This idea is often pushed by climate change refuters as another way to avoid dealing with the issue – even though it contradicts the main refuter claim that climate change isn’t a big deal in the first place. But the inherent contradiction is just another example of how almost any argument possible is used to try and refute what’s commonly called “climate change.”

But is there any merit to the idea that it’s too late to act?

Not at all.

While the signs of significant change are undoubtedly appearing, it is an enormous mistake of evaluation (or, more commonly, simply a claim by refuters as yet another argument to avoid redress on the issue), to think we can’t have much significant effect on a rapidly compounding problem specifically arising from actions and patterns that we in turn, specifically, engage in.

We can have an effect by definition. Also by definition, we can have a large effect – since it is we who are continuing to alter the long-term chemical composition of the atmosphere. And we – no one else – who are doing so at a remarkably rapid geological rate.

It’s easy and nice to wax philosophic, make excuses for inattention, or ignore that which seems abstract until it’s too late (and for which later generations curse the heck out of us.) And certainly what has already occurred can’t be changed, and so the focus needs to be on the future, not the past. But moving forward, we control our own future.

Even more important to consider – yet often misinterpreted by a couple of well meaning scientists who already fear the worst (keep in mind however that much of that fear is usually also based upon a belief that we stubbornly won’t change in time), and skeptics who will make any excuse imaginable to perpetuate the ingrained and wildly archaic attitude of the earth as “huge” and man as insignificant and so incapable of significantly impacting it – is that further changes to the long term composition of the atmosphere may matter as much, if not more, than changes that have already occurred.

Here’s why:

The changes that have already occurred will have a cumulative effect upon overall climate via two main mechanisms.

The first is through increased atmospheric energy (heat) capture, as more heat that is kept from retreating to the upper atmosphere and outer space, but retained by our earth atmospheric system – starting with the atmosphere itself – will warm the atmosphere and earth below it, more than the atmosphere and earth below it would have otherwise been warmed in the absence of this increased captured energy.

The second mechanism is the more important of the two, and is the one most often misunderstood (or similarly overlooked or incorrectly trivialized.) That mechanism is the less predictable but increasingly more important effect of this increase in the amount of captured atmospheric energy upon all the other main long term drivers of climate after the sun and total atmospheric recapture (or total “greenhouse” effect).

These most notably include the world ocean (or “oceans” in more common usage), and the massive, normally stabilizing ice sheets near both poles of the earth. (See links just above for evidence of change, and now accelerating change, in these areas.) It also include’s the earth itself – the land and its surface

In other words, in the long term, climate is not just driven by sunlight and the amount of atmospheric energy capture, but by the longer term structural conditions created on earth by those two phenomena in the first place.

This is why if there were no long term greenhouse gases in the atmosphere at all, the earth would be a ball of frozen rock hurtling through space with no or little life upon it, with an average temperature, instead of the current 59 degrees or so, of about zero degrees Fahrenheit. The cold would produce more ice, which would cause far less solar radiation to be absorbed by the earth’s surface in the first place, etc.

But the retained energy of the ocean (in the form of heat) over time interacts with atmospheric energy, and drives much of what produces that atmospheric energy. In fact, along with incoming solar radiation, and then absorption and re radiation by greenhouse molecules of thermally radiated heat from the earth’s surfaces (including ocean surfaces), it’s largely what produces almost all of it.

So if – as the long term composition of the molecules that capture radiated heat in the atmosphere rise – the oceans over time get warmer, the long term temperature and climate will be very different than if just the the long term composition of the molecules that capture radiated heat in the atmosphere itself rose.

This is why what is happening in our oceans is more important right now than short term air temperatures.

And those oceans are gaining energy at an alarming rate.

It is not that the oceans are super hot by geological standards: It is that they are both changing in the direction of gaining heat energy, and they are changing at a rate that as best as we can tell is near geologically radical, as well.

Yet most of the popular examination of this issue is incorrectly focused on air temperature as the arbiter of what kind of change has relevantly taken place, when it is only a small portion of it.

This mistake is made in part because we can easily relate to, measure, and “feel” air temperature, and it’s less conceptual, and more concrete seeming. And it’s made in part because of the massive misinformation and mis-focus with respect to the issue, because many have ventured in with or developed an often fervently held opinion on climate change despite little and often incorrect knowledge of the relevant facts, or an intensely widespread ideological drive to simply try to refute a notion: one that we don’t want to accept; one that’s abstract; one that’s long term; one that involves complex risk ranges, and ones that are largely in the future; and one that technically can’t be “proven” until well after the fact.

But an enormous driver of the amount of thermal radiation that occurs in the first place, is also not just sunlight, but the albedo of the earth. Sunlight is short wave radiation, essentially non-absorbable by greenhouse gases. If sunlight hits a light colored surface, most of it is reflected back outward in its same short wave form, and greenhouse gases don’t “trap” it. If sunlight hits a dark surface, instead of being reflected, most of it is instead absorbed.

This causes two key differences. Albedo loss increases the amount of energy retained by the earth (and then available for re absorption an re radiation by the atmosphere at some point, or at least effecting the balance of what energy is so available). And it tends to increase the retained energy of the surface with the lowered albedo, warming it, and over time potentially furthering the albedo lowering process, unless something is acting to counter act it.

Thus, ice tends to beget more ice, until a balance is reached in line with the general total heat energy being initially made available (the sun) and re-available (atmospheric capture of thermal radiation from the surface of the earth, via greenhouse gases).

So cutting back on albedo, which increases the effective amount of relevant solar radiation – solar radiation that’s actually absorbed as energy instead of being reflected right back in essentially non re-absorbable form – then increases the likelihood of even further ice decrease, until again an overall (relative) balance is reached.

___________

Again, one of the biggest mistakes made on the issue of climate change is to naively assume that it’s some sort of nearly contemporaneous process whereby more greenhouse molecules heat up the air and thus the “air,” and thus “the globe” as well, is warmer.  Or that the overall process can be modeled with pinpoint precision.

Most of that latter mistake – that to know the earth is changing we must somehow be able to model it all in advance with pinpoint short term, pathway and range precision is, again, due to massive misinformation on the climate change issue (and a lot of misleading rhetoric that leads to even further misunderstanding of the issue), as well as occasionally poor scientific explication, which presumes incorrectly that the basic idea of climate change is predicated upon, or even requires, “models,” as well as the even more heavily flawed idea that climate models make predictions, rather than projections, or that they “prove” climate change, rather than serve as tools to help us learn to better project possible ranges and further hone our broader understanding of the issue.

Yet far from being contemporaneous, there has to be a fairly significant lag between ultimate cause and effect, if any significant long term change is present.

Not that some effect won’t be initially present (as difficult as it is to sort out “change” from natural climate variation, which variation is itself intense, and only likely to be far more inherently intense within an increasingly changing climatic system); but that the real changes come from the underlying shifts that take place from a slowly accumulating buildup of energy.

We are starting to see the formation of this right now, as the oceans, for instance, gain heat at a remarkable rate, and glaciers all over the globe, including both polar “ice caps,” start to melt, and, in almost all cases now measured, accelerate in that melt. (Skeptics will ignore all of this, or point to tiny slivers of the entire picture to arrive at a different, and incomplete, picture of what is really going on, often without even being aware that they are doing so while convincing themselves and tens of millions, otherwise.)

Thus as ice melts, the process has to be jagged, non linear, and depending on the amount of input, likely greatly accelerating at some point, even with potentially large shifts over quick periods of time – we just won’t know that last part until (an if) after the fact. But ice melting begets more of the same process that led to ice melt in the first place.

If there wasn’t a massive structural change that had taken place, ice melt would sort of even out in some type of balance with incoming energy, perhaps with shifts even to massive glaciation (as we’ve seen in periods of glacial encroachment during the current, now about two and a half million year old, ice age, as changes in the earth’s orbit around the sun and the tilt of it’s axis and so forth change net sun input at repeated intervals of time).

But a massive structural change has taken place, and is continuing to take place in terms of the earth’s basic energy effecting systems. And this is largely what we miss the significance of, merely because we can’t immediately “see” any seemingly astounding effect. And the first part of that change is the change to the long term thermal radiation trapping property of our atmosphere, which has so far been geologically radical, and is becoming ever more so by the year.

That is, most studies put the level of carbon dioxide in the atmosphere above any level the earth has seen for the past 3 to 5.5 million or so years. One seminal study even put it at 10 to 15 million years. This doesn’t even take into account the addition of CFCs, which are wholly man made, and though sparse, extraordinarily potent (and extraordinarily long lasting) greenhouse gases; nor levels of nitrous oxide or methane, both of which are also well above any recent geological levels we’ve been able to figure out, and which in combination with the massive shift in carbon dioxide, likely put the total global warming potential equivalent (or GWPe) of the atmosphere above simply the 3 to 5.5 million year (or greater) change estimation measured by carbon dioxide changes alone.

What is also rather stunning is that in so far as we can go back and get somewhat reasonably accurate longer term atmospheric gas levels, mainly through ice core sampling, carbon dioxide levels were always far below where they are right now:

Of course, climate change “skeptics” argue (as they argue nearly anything and everything) that carbon dioxide “doesn’t matter.”

But you can just as easily say that “pigs fly.” Except the pigs fly statement is straightforward, and everyone has a basic enough grasp of pigs and the relevant science and empirical analysis to know this is simply not the case. Were it more complex, we could just as easily assert that pigs do fly, if we wanted it to be so.

Here: Take the mass times the acceleration of the mean body weight divided by the hypotenuse of the force squared times 1.6, throw in a few laws of science that sound great but that aren’t being correctly or relevantly applied… divide again by 7, multiply times pi, then take the cube root of half…. etc… etc… and we can see that in fact pigs are almost perfectly designed for flying, but mainly fly at night when we can’t see them do so.

Gobbledygook, sure. But I or someone (or minions of someones) solidly committed to the cause of pig flying belief could have worked on it around the globe to come up with far better rhetoric; limited only by the basic physical limitations and realities fairly well programmed into our evolutionary understanding of the basic differences between swine, and, say, birds, and thus easy empirical validation or falsification of the premise.

Plenty of similar theories abound on the Internet as to why carbon dioxide is similarly inconsequential, to the delight of those wanting to so believe.

But pigs flying is little more ludicrous than the notion that multi million year level changes in the amount of gas in the atmosphere responsible for absorbing and re radiating energy that would otherwise be lost to the upper atmosphere and outer space is irrelevant. Pigs flying is only far more ludicrous appearing, because of our basic knowledge and empirical observations, in contrast with the remarkably complex and geologically grandiose time scale of atmospheric energy retention and transfer, upon a wildly diverse, divergent, inherently wildly variable, global scale. (And those decades, if not more, stand in sharp contrast to the rather more immediately instantaneous nature of pigs flying or not flying.)

But again, the increase in absorbed energy from dramatic atmospheric increase in its long term molecular absorption and re radiation properties is altering the energy balance between land sea, below sea level, and air – and increasing the total net retained energy of the physical earth (and ocean) itself, which is what matters here.

Ice covered surfaces – whether land or sea – stay largely insulated, as most sunlight is reflected back outward.

Non ice or snow covered surfaces are not so insulated, and far more sunlight is absorbed by the surface and retained as heat energy. This either slowly increases the heat energy of that mass (be it land under permafrost areas, permafrost itself, glaciers, ice sheets, ocean water columns, or parts of the earth itself), or is released back as heat, including as thermal radiation – which, again unlike reflected sunlight, is then absorbed and re radiated in all direction by greenhouse gases, based upon the amount (and type) of greenhouse gases in the air to both in part warm the air, and further warm the land and sea below it, and so on.

This is part of why arctic sea ice matters so much. The north pole is open water, and it normally stays covered during the northern summer months when the sun’s rays are hitting it.

That is now changing as the total net amount of summer arctic sea ice melt has been rapidly decreasing. (Climate skeptics even repeatedly point to a very recent “increase” in total sea ice extent, coming off of a year – 2012 – that crushed the previous minimum sea ice extent record – 2007 – by nearly 20% and which was almost 50% below the 1979 to 2000 average – to argue that climate change is a “hoax,” and arctic sea ice is “increasing,” which in climate change variability terms is barely a baby step removed from arguing that the globe is getting hotter because Wednesday was much warmer than Tuesday in New Zealand.)

While data is more exact since 1978 when NASA launched the Scanning Multichannel Microwave Radiometer (SMMR), here is the general trend in arctic sea ice: (Data from the National Snow and Ice Data Center)

Notice that the chart is not just measuring total change from year to year, but the difference in ice extent from the overall average from 1981 through 2010, which average includes a great deal of (downward) change already – and yet the second, or later, part of the graph continues to decline.

And this overall longer term pattern of arctic sea ice loss is now even starting to cause increased warming of shallow sea bed columns, leading to thawing of long frozen methane hydrates and – along with increasing if just beginning permafrost area releases – heavily spiking climate change compounding atmospheric increases in these areas.

Climate change skeptics also repeatedly argue that polar ice is “not decreasing,” and that climate change is not real, because antarctic winter sea ice extent is increasing.

This is sort of like arguing that your basement is not flooding if one room that normally has a foot of water in it is at 2 inches, and the other 3 rooms that normally have no water, are filled to near the ceiling.

While some areas of the sea surrounding Antarctica have seen large ice decreases, and other areas large increases (once again, indicating changing conditions), overall winter sea ice in the area (not summer sea ice as is being lost in the arctic, although that point is almost always overlooked as well), in the area is increasing at a slight rate.

We don’t yet know why for sure, as there are many things which we don’t yet know for sure (as skeptics once again take the ongoing process of science learning itself and conflate that with a false refutation of basic climate change). But this is likely due to a combination of conditions, all of which seem to be very strongly climatic change related, and which consist of fairly significant Southern Annular Mode wind intensity increases which push newly formed ice northward (away from the south pole and away from the Antarctic continent) allowing for more ice formation, as well as increasing surface water insulating glacial melt for underneath portions of the Antarctic ice sheet.

And the antarctic sea ice extent is also increasing at only about one-fifth to one-tenth of the rate that arctic sea ice is being lost. And, again, it’s increasing during the southern hemisphere’s winter months, when the sun’s rays aren’t present, or are just glancing off the horizon, and far weaker.

And both Greenland – northern polar area – and Antarctica – southern (and directly) polar land masses are experiencing net ice loss. (But some climate skeptics, practicing their own brand of what we’ll humorously call “science,” have found ways to in their own minds at least refute this as well.) And both northern and southern polar regions are now both experiencing accelerating net ice loss as well.

Why skeptics would focus on only one of four quarters of the total polar ice picture to argue that polar ice is increasing, rather than four quarters, again only has one plausible explanation. That is, there is no plausible scientific explanation as to why three quarters of the full polar ice picture would be ignored and one quarter (and a very misleading one quarter at that) – as if that presents the full picture – would be focused on to draw a conclusion as to whether our polar regions are melting or gaining ice or not, or whether climate change is “real.”

And that is the same explanation as always – the pattern of using any seemingly logical or valid argument possible to refute, “deny,” or not accept climate change, and the basic idea that mankind is now powerful enough to be inadvertently affecting our world also in powerful ways that we were perhaps not fully in tune with, and doing so through patterns that due to habituation, presumption, fear of near term and concrete change (the weather is always changing, so the abstract notion of “climate change” over a very long period of time is not really change in this sense), or a host of other reasons, we perhaps don’t want to change.

It may still be “relatively” slight right now, but ice is starting to melt, and it will keep melting until a new stases is reached – one where energy is in balance between the earth itself and the atmosphere, given the amount of sunlight reaching the earth, the amount of sunlight being reflected, and the amount of thermal radiation being absorbed.

The more the atmosphere changes, the more radical, and likely compounding, that stases will ultimately be. As ice melts, more heat energy is gained, since less sunlight is reflected. This begets more energy retention by the atmosphere, which is also occurring due to more greenhouse gases, etc.

Snow is fairly similar to ice in terms of having a high albedo. And about 24% of the total northern hemisphere land mass is permafrost – essentially permanently frozen ground, normally covered with snow or ice.

And while the signs are still early, our permafrost regions are also starting to melt.

Even more tellingly, in ground temperatures under many permafrost regions are increasing at a faster rate than the air temperature above them, indicating an increased likelihood of future, and accelerating melt.

This is key not just as an indication of a shifting earth energy balance, but also, again, because of this issue of albedo, plus here a second, similarly interesting issue.

That is, a change from snow and ice cover to open tundra represents a shift from most solar radiation being reflected back upward, to the majority of it being absorbed. (And, while still much higher than darker ground or open vegetative tundra, even slushy melting snow and ice has a significantly lower albedo than frozen snow.)

But in addition to the significant fact of massive upward energy shifts associated with any significant change in overall surface albedo, here there is a second self reinforcing, or amplifying mechanism to melting, or warming, permafrost, as well – one that again also kicks in far from linearly:

Namely, the northern permafrost also houses almost two times the amount of carbon currently found in our entire atmosphere. Some of this carbon will also be released in the form of CH4, or methane.

This is remarkably significant: Although it essentially ultimately breaks down into carbon dioxide (hence why methane’s global warming potential decreases over longer periods of time), over a 20 year period the GWPe or global warming potential equivalent of methane is about 83 to 86 times that of carbon dioxide. (GWPe is a measure of a gas or compound’s thermal radiation absorption and re-radiation properties in comparison to the fairly low, but still significant capacity of carbon dioxide, which is always measured as “1,” and used as a basis of standard comparison for all other gases and compounds.)

A molecule of methane only has about 36% of the mass of a molecule of carbon dioxide. While many articles on the subject of global warming, and even global warming potential are sloppy on the issue, GWP is measured per unit of mass, not molecule. So an identical mass of CH4 over a 20 year period absorbs and re radiates about 83 to 86 times more heat energy than an identical mass of CO2.

But the effect would only be about 36% of that amount per molecule (or per carbon atom) since a molecule of methane (one carbon atom and four hydrogen atoms) has about 36% of the mass of a molecule of carbon dioxide (one carbon atom and two oxygen atoms). So the GWPe of methane on a molecule per molecule basis, in comparison to a molecule of carbon dioxide, would represent about 31 times the heat energy absorption and re-radiation of each molecule of carbon surrounded by two oxygen atoms (over a 20 year period.)

This is still an enormous difference: For each trapped carbon atom released as a molecule of methane, the total cumulative global warming potential effect in terms of the amount of heat energy absorbed and re radiated per molecule over a 20 year period, is still about three thousand percent greater than for each atom of carbon released as a molecule of carbon dioxide. That’s a lot.

So to try and help with visualizing the difference, even if probably an unrealistic scenario, imagine if suddenly the permafrost unexpectedly just melted like crazy and a little over one half of the total carbon stored therein was released. If it was all released as carbon, for a while anyway it would be like a (still incredible) deluge of carbon equal to nearly the total amount of carbon already currently in the atmosphere.

On the other hand, if it all released as methane, it would be like a (far more incredible) deluge of carbon equal to nearly thirty times the total amount currently in the atmosphere, or an effect 30 times greater.

In other words – in terms of adding energy to the total earth atmosphere energy balance – a release of one giga-tonne (a billion tonnes) of carbon as methane, over a 20 year period at any rate, would be equivalent to adding thirty giga-tonnes of carbon as carbon dioxide

Again, the above scenario is a little bit ridiculous. But it is helpful in grasping the magnitude of the difference between methane, or CH4, and carbon dioxide, or CO2:

Again, over time, CH4 breaks down into CO2. (Hence why if its GWPe is measured over 10 years, the number is much higher still. But if measured over 100 years, while still far higher than carbon dioxide, it’s well below 86: about 23 times more powerful per unit of mass, or about 8-9 times more powerful per molecule, since for most of that period the carbon will exist as carbon dioxide and not the far far more potent, but shorter lived, methane.)

Grasping the magnitude of this difference is also very important for getting a feel for the relevance of the permafrost issue, since while it is unknown exactly how much carbon would release as each gas, almost all estimates suggest a fair to very large amount of it would emit as methane. (And again, there is also an enormous amount of methane stored in sea bed floors, which, from essentially dormancy as best as we can tell, seem to be starting to erupt.)

So it’s significant. Which, if the permafrost starts to severely melt – particularly in combination with warming sea bed columns, is sort of like saying the planet Jupiter is “large.” In other words, hugely significant.

We just don’t know to what extent this will occur. But one thing is fairly certain:

The higher the overall heating of the earth – which comes directly from sunlight, which we don’t control, and which is what it is (and while it fluctuates, it is relatively stable, even if it has ironically been going down lately and still the globe continues to amass heat energy, and on an accelerating basis), and from the long lived greenhouse gases in the air, and all that they drive (including water vapor – itself a greenhouse gas on the one hand, but an albedo increasing blocker of sunlight, on the other -the albedo of ice versus melting ice versus open tundra, as well as ocean delivered heat, etc.), the more likely the permafrost is to shift increasingly rapidly into being non existent frost, with major consequences towards a (from our perspective) radically changing earth.

We may have already set some permafrost change into motion, depending on future mitigation strategies (aside from greenhouse gas emission curtailment). But the more set in motion, the more compounding the effect, particularly as permafrost starts to significantly melt, spewing out more heat absorbing carbon atoms, and greatly decreasing albedo and thus greatly upping the heat energy retention through solar absorption versus reflection, by the earth’s surface in the first place.

Since ice sheets are already starting to melt – even if the overwhelming majority of the northern and southern polar ice caps have essentially just begun to do so – and the ocean has warmed at a fairly remarkable geological rate, while atmospheric levels of greenhouse gases are at multi million year level highs (let alone the more relevant – and yet avoidable – fact that in geologic terms, due to our unmitigated actions, they’re still skyrocketing straight upwards), it is likely there is a significant amount of future warming and some likely impact upon the permafrost regions already to be realized, even if atmospheric greenhouse gas levels stabilized (stopped going up) tomorrow.

But whatever future warming or change may already be in store (and which depending on what we learn as we go forward we may be able to mitigate a little bit depending on time frame and several other factors), that’s a huge difference from pouring extraordinary amounts of essentially very long lived gasoline on the seemingly slow brewing geologic fire, that continuing to add to total atmospheric greenhouse gas levels is in effect doing. All of which can be ceased as we grow in a way that’s actually in our interests, rather than against them, through sensible recognition of just what the issue is first and foremost, the abeyance of myopic fear that we need to engage in counterproductive practices to “grow,” and some proper motivation, incentive, and pulling together, on the issue.

But the first step, just because the house is seemingly slow burning or most of the burning is hidden deep within the rafters, is to stop pouring barrel fulls of gasoline upon the fire, which is what the silly arguments that “there’s no point in acting now,” essentially argue against stopping.

___________

The more basic reason that stopping or changing the actions now causing the problem may be even more important than what atmospheric change we’ve already effected, even with already high long lived greenhouse gas levels, is that despite some of what’s been written, the climate change phenomenon likely compounds in a non linear, unpredictable, and shifting way until a chain of events is set in motion that barring major earth re engineering (which could bring about even bigger problems, nobody knows, and may be too late at such point anyway) will continue until a radically new (for us and many present day species) underlying earth stases – and climate stabilizing – condition is reached.

Such as the full blown melt of permafrost regions sufficient to set out enough carbon, and sufficiently decrease albedo, to finish off the job; the warming of sea columns sufficient to melt most of the barely frozen methane clathrates among sea bed bottoms (all of which would emerge as methane, not carbon dioxide, and which – though estimates are a little more speculative – in total represents somewhere between 1 and 4 times the amount of carbon in the entire atmosphere, and which released as methane would be geologically sensational), or, also through ocean and ultimately some air warming and other changes (all amplified by some of these compounding effects and others), enough energy change is built in to set both ice caps on an irreversible course of near full melt, for example. That would means hundreds of feet of sea level rise, not dozens.

We may have already crossed  a threshold or two, but there are likely more, and ones that are more significant.

Also, pause for a moment if you were taken aback by the mention of dozens or hundreds of feet of sea level rise. Geologically, that’s not a big deal. We’ve just been constrained by our limited sense of the world and our own recent evolution and circumstances. While geologically, the change we’ve already wrought to the atmosphere is already significant, and we’re amplifying it at breakneck speed. But we have very little sense of that, at all. So it all seems abstract.

But it’s not. It’s just hard to fathom. It covers a complex risk range. And it’s subject to a remarkable level of misunderstanding and outright self reinforcing “denial” and accompanying misinformation on the topic, which even goes so far as to conflate every little mistake of science or “over estimate” (while ignoring all of the under estimates and, more importantly, the more important fact of the change in the first place), with “refutation” of climate science itself.

This is very easy to do, being as we’re a species that is extremely illogical, relative to our capacity to think we are being logical: Particularly climate change skeptics with some science background who are absolutely convinced they understand this topic better than the climate scientists who professionally study it, and who often turn to self reinforcing and highly popular misinformation sites, housed under the guise of science and a steadfast belief in the idea that mankind really can’t much affect the earth’s climate. (Which is about as sensible as the inability to see hundreds of years ago that the earth pretty much couldn’t just be flat, rather than round, appealing as the flat theory was at such time to the great majority who, with fervor and righteousness equal to climate change skeptics today, so tenaciously clung to it then.)

Hence part of why there is such massive misinformation on the topic, getting in the way of even the most basic understanding of it.

The sun and (very slowly cycling) earth orbital patterns control the initial energy input, the atmosphere controls the re absorption as well as all things that then indirectly affect that re absorption (albedo, water formation and evaporation, etc.), and at this point, we control the atmosphere. We can continue to add to it at breakneck speed and later ludicrously (from a scientific perspective anyway) leave memorandums to future generations that “we didn’t know”; continue to add to it; or stop adding to it.

Whatever we do, in terms of the future energy balance of the earth, and thus it’s (and our) ultimate climate, it matters a lot. This is something that rhetoric aside, can’t be avoided. We’re the ones changing the atmosphere.

The atmosphere plays a huge role in absorbing energy – in fact the entire role in absorbing energy.  And absorbed atmospheric energy ultimately plays a large role in shaping the energy balance, and climate of earth.

While a small change may be balanced out by stabilizing forces, a large change has to change those stabilizing forces, and that is what we are already slowly starting to see.

It’s just a question of how much.  Which is also up to us.

Not Necessarily Just Change over Time, but Increasingly Volatile Weather, Precipitation, May be Most Problematic For Agriculture

Updated and edited 11-10-14
Climate has a lot to do with how plants grow. Naturally this is relevant to us because among other things plants represent our food supply, or the basis for it.

And as has been expected, that climate is starting to change. (Update: Claims that our changing climate just “coincidentally” reflects normal random movement and not our ongoing atmospheric heat energy absorption changes make no scientific sense on any level. A big part of the reason why, as well as the pattern that nonetheless perpetuates such claims, can now be found here.)

As the link just shared points out:

13 of the 14 warmest years on record have all been in the first 14 years of this decade…and 2014, according to NOAA, is on track to become the warmest year ever.

Despite this, most of the increased heat energy from a higher level of long lived atmospheric greenhouse gases is going into the world ocean, which has been gaining heat for decades; and at a rate many times faster than likely at any time in the past 10,000 years, and accelerating.

Net glacial ice sheet melt is now occurring at both poles, and at least one set of ice sheets in the more stable and larger Antarctic (worth about 10 plus feet of sea level rise on its own), is now facing likely irreversible melt. And ice sheet loss is not only occurring, but accelerating in both polar regions, particularly in Greenland, where the rate of acceleration is becoming near “remarkable.”

There has also been an increase in extreme weather, along with changes in precipitation intensity. While at the same time, much of what is written on the tie between our changing atmosphere and unusual extreme weather events cherry picks select data or mistakes basic statistics, and misconstrues the basic reality that everything that is a part of our climate is affected by our atmospheric shift, because our climate to some degree has already been affected by that atmospheric shift.

Yet we over focus on the almost silly question of whether “climate change” did or didn’t “cause” this event, when it caused all and none, simultaneously, as it’s now a part of our world, and all climate is a reflection of that world.

Similarly, isolating out whether a “particular” storm would have occurred, or would have occurred in the same way in the absence of our major atmospheric shift, is pointless. In some ways it is also theoretically near impossible to do. Yet drawing the conclusion of an overall total effect, and to some measure perhaps a range of extent – what matters – is far from impossible.

That is, we can know that we are affecting the movement of climate, and the reflection of weather thus within it, to an increasingly (and, albeit erratic, accelerating) degree, without being able to precisely write out the script in advance, as if climate did not still represent variable weather over many decades, and that weather was still largely unpredictable to at least some degree with it.

Yet there’s nevertheless extensive hype that the climate really isn’t much changing. Or that if it is, it’s simply random, and thus represents what the earth would be doing even if we hadn’t increased the concentrations of long lived greenhouse gases to levels not seen on earth in millions of years.

This of course would mean said geologically radical atmospheric change, by similar remarkable coincidence, is nevertheless not changing or affecting the climate – which is instead proceeding along the path it would have had our atmosphere not been altered. (In scientific terms this is called a flight of fancy. In much of the media’s eye, and climate change refuters eyes – some of whom are scientists but, notably, very few of whom are actual climate scientists – it is called a “point of view.”)

We expected climate to change, and it has now started to so change.

And most of that change is affecting the things that will both affect future change, and drive climate, and that are being all but ignored while we over-focus on the misleading picture of air temperature alone.

_____

We don’t know exactly what will change in terms of some specific functions of climate. But we have a pretty good general idea of some things that will or may change. While there are some things we don’t really have a good idea of the long term range of change on.

Such as precipitation patterns, which are ultimately a reflection of climate itself, and thus become part of it.

While we don’t really know, we expect overall precipitation patterns to change  for the basic reason that precipitation is ultimately the release of water molecules that are accumulated as a result of heat. More relevantly, as regional patterns over time are likely to vary wildly in response to what is in essence, again, a multi million year geologic shift in the net addition of energy to our earth lower atmosphere system (and one that is relatively “sudden” in geologic terms), precipitation patterns are much more likely to change within certain regions.

And the biggest problem climate change might pose for agriculture in some ways, could be a major change in our overall precipitation patterns; particularly on a regional basis.

This would include changes in various regions from dry to wet, and vice versa. And changes in the general intensity patterns and rate of precipitation.

With a generally warmer, changing atmosphere – that will both evaporate, and can hold, more moisture – there is a high chance of more intense precipitation events; with, in some areas, longer periods of no or minor precipitation in between more intense events.

The first effect, a general shifting of the overall precipitation level, will have major impacts on various regions, depending on the level of change, and those regions themselves:

Large scale agricultural production, or a society in particular, can’t always just “get up and move” to another region. So poor regions of the globe, for example, that depend upon local agricultural conditions and that have less access to water or funds for large scale irrigation, would be badly hurt by decreases in overall precipitation amounts.  And they would be potentially devastated by any major change into a far more arid regional climate from the one they have come to depend on.

The second effect – the potential increase in the intensity and variance in precipitation events – may not be as problematic in full for those areas that otherwise simply get hammered with a major change in the direction of hostile (generally, much more arid), growing conditions. But this effect will be more generally problematic across the board for at least two main reasons:

The first is that our current system of rivers and streams have either evolved, or been fine tuned, over the past few hundred thousand to few million years. (And in some cases less.) They are generally, although not perfectly, a reflection of broader longer term precipitation and evaporation patterns, not “random.” So the rivers or river and stream structure in one area wouldn’t necessarily be very adept at handling the precipitation patterns of another, for example.

Rivers also take a while to carve out from the land; they can’t be changed overnight. (And even less so with a lot of structures, other buildup and macadam, prevalent in a lot of areas.)

An increase in precipitation intensity also puts more runoff pressures on a region’s landscape. And thus, the greater the frequency and the greater amount of excess precipitation, the more common and more intense the flooding.

This effect has already been furthered by infrastructural buildup, which can sometimes narrow the effective area for natural water flow pathways in response to either ongoing intense, or changing, precipitation, and often removes trees and other natural features that help anchor the ground, control erosion, promote or allow for ground absorption, and lessen the negative effects of excess runoff.

But when it comes, again, to plants specifically, the potential increase in precipitation intensity presents an interesting future agricultural issue. For this reason: Plants generally evolved under present conditions.

It appears from fossil remains and other indicia that plants from some of the eras long long ago – when long lived atmospheric greenhouse gases were more prevalent, oceans much higher, and the globe generally warmer – and more humid, that plants were often larger.

While this may not represent all the species of such eras, it does at least make some sort of superficial common sense: A larger plant, particularly one with a strong and deeper root system, can in theory withstand the rigors and volatility of more varying, and potentially periodically intense, precipitation patterns.

This might be due to stronger anchoring, a deeper soil penetration for extra absorption capacity, and a larger upload and perhaps even storage capacity for employment during excess water availability, for example.

Think of an unwatered garden after a period of excessive drought. Many of the plants – particularly those most shallow rooted – will have perished; while nearby trees look perfectly fine.

If general precipitation patterns do accelerate in intensity – meaning higher chances of longer periods of little water, as well as of excess water in both short term intense precipitation events or multiple events over a short period of time – current crop structures might become increasingly pressured, as a higher and higher percentage of total precipitation becomes unavailable for plant growth, or in essence “wasted.”

This is already starting to happen in many areas, while many others – notably Australia, an area that leads even the U.S. in denying climate change, and already the driest continent on the planet – have been experiencing “unusual” levels of drought intensity.

Increasing intensity of events interspersed with larger variation in between significant precipitation events means there will be longer periods with insufficient or less than optimal available ground water, while there will be other periods of excess water that can’t be absorbed, and is lost due to extra runoff and even deeper ground absorption from excess water during long periods of intense precipitation.

But, plants, with human breeding assistance, can often change quickly. After all, as one example, a simple spindly wild mustard has, with much aid from the hand of man, been shaped into a family of some of the easiest growing and healthiest foods on the planet: One that includes cabbages, broccoli, Brussels sprouts, cauliflower, rapeseed (from which canola oil is derived), kale, collards, arugula, and turnips.

So perhaps we might pull off an assist toward development of longer or more extensive root systems, changed leaf water loss patterns, etc., as the needs of plants change in response to changing climate, and in particular, precipitation patterns.

But an increase in possible precipitation intensity and variance will still comprise at least part of the agricultural challenge in response to an increasingly shifting climate. Particularly for some areas of the globe, more than others, as the path of change won’t necessarily wait for our human assisted floral adaptation to it.

And, at least in the shorter term (what we’re concerned with in terms of human generational lifetimes), there may be some restrictions upon it relative to the level of change that can easily occur, given what has already been a multi million year shift (increase) in the concentration of long lived atmospheric greenhouse gases – which in turn have been radically increasing the net earth lower atmosphere energy balance. (Most of which has been going into starting and now accelerating the process of net glacial ice loss, increasing ocean heat energy, and permafrost softening and melt, all of which, to the popular and often the media eye, are largely masking the real issue of “climate change.” Here’s an interesting and it seems just now “surfacing” example.)

The increasing heat can also be problematic – a lot of plants simply stop growing past a certain temperature. But increased heat in other climates may extend growing seasons. And, in rare areas where (despite all the misinformed hype about how increased CO2 is great for plants!) CO2 is the limiting factor, increased CO2 can increase plant growth.

Much learning will likely be ongoing, as systems change, and out of necessity we struggle, experiment, and explore to adapt. (Scientifically intriguing for some wealthier areas of the globe, or, depending on how bad it might get, at least wealthier or “well off” peoples, on the one hand; very problematic to potentially devastating for poorer, less flexible, and regionally more vulnerable areas of the globe, on the other.)

But another area that in advance looks particularly problematic is that of increasing overall weather volatility.

Plants are geared to certain patterns in both light, and temperature. A changing climate is not going to change light patterns. That’s a function of the simple rotation of the earth and it’s slow undulating year long rock back and forth on its imaginary axis. (Of course if discovering that something we did was changing the rotation of the earth and its tilt on its axis and that meant it would affect the climate, climate change naysayers would find ways to refute that as well.)

But a changing climate is going to affect temperature. Increasingly, and, along the rocky way, probably – as was one of the earliest predictions, and already in these early days of “pre change,” statistically borne out – in a more volatile fashion.

This makes sense, as a normally relatively stable globe starts to respond to the increasing changes to its basic climate affecting structures (oceans, ice caps, sea ice, permafrost regions, and of course the more direct lower atmospheric absorption and re radiation of heat energy itself) in what is for all practical purpose a near geologic instant, until, voila, years, possibly centuries, down the line, when climate “relatively” re-stabilizes in response to the effected changes, long, long after the atmosphere’s levels of long lived greenhouse gases, from a geologic perspective, become at least relatively stable again.

That is, an increasingly changing system from a “relative” stases, to an ultimate new stases when it comes to what is ultimately an expression of it’s net energy – climate – is likely to be a lot more volatile, and overall, inherently changing and unpredictable, as well.

This can be kind of problematic for plants.

Think of a fruit orchard, for instance. Many fruits need a certain number of “cold days” to blossom and bear fruit. The number of days will likely continue to (increasingly) shift, and orchards might shift northward. But the increasing volatility also makes it more and more unpredictable, and subjects more and more areas to potentially insufficient cold days without moving to climes where the warmer period duration may not be sufficiently long.

Many fruit trees set their blossoms in response to a temperature change. And a late frost which kills the blossoms will prevent that tree tree from bearing any fruit at all, for that entire year.

For a homeowner enthralled with their side yard apple or apricot tree, this might range from a curiosity to a nuisance. But to an orchard owner who depends on the yearly crop, it can be a bit more.

And it adds even more to an already uncertain enterprise. Consider the following tale:

I was playing in a large, fairly publicized poker tournament some years back, and our mid level table became chatty.  One fellow was playing more like a “gambler,” than the calculating, aggressive, strategist that decent poker tournaments tend to present, and increasingly funnel as the tournament moves forward; and being extremely mirthful about it.

A few humorous but very friendly remarks were made, and this very pleasant fellow bellowed, “ah, heck, this don’t matter at all, what I do for a living is real gambling.” He sat on the word “real” for a long time, with just a hint of a much more serious tone than his statement, and most of our banter, had taken.

For an instant the hand was nearly forgotten as we all wildly conjectured. Even the dealer – consummate, almost machine like professionals in any well run, serious tournament – essentially stopped practically mid deal.

Well?

If you’re reading this article/post, you may have guessed the answer.

“I’m a farmer.  And that, I tell you, is all a gamble.”

We all laughed, enjoying the camaraderie and cultural insight while simultaneously participating in such an intensely competitive, focused, and “serious” event.  But I think we all got it.

I’ve grown a lot of plants in my time – even more since. And I really got it.

Farming is a gamble.

But there are a lot of “knowns”; or, at least relative knowns. What is becoming less known – and increasingly unpredictable – in addition to precipitation patterns in many areas, is the general nature of the season, and temperatures.

If you think being a business man or banker and not having a decent handle on what the general inflation level range might be for the next few years, try being a farmer – without much of a backup plan or lots of extra seasonal “room” – without much of a handle on just when temperatures might reasonably stay within the necessary growing range, for instance.

A lot can go wrong with extreme weather, from both the extreme nature of it, to the unpredictability, and being caught by surprise.  In hot weather, for instance extreme humid can cause pollen to become so sticky it’s doesn’t fall, while long periods of dryness can cause it to be so dry it doesn’t stick to the female part of the flower. In both cases the plant won’t set, or will set, less fruit. (Fruit incidentally refers to most things we also commonly think of as vegetables, such as cucumbers, squashes, tomatoes, corn, etc.)

Extreme heat with drought can rapidly kill plants. Premature cold spells (for example, in more northern climes that have had to shift what is grown toward warmer weather crops, as the seasons have changed) can kill plants well before they’ve realized their full yield. And late cold spells can kill them even before they start yielding at all.

Fires are also problematic, as drier conditions and hotter conditions in many regions overall is leading both a larger risk, and larger number of, fires; including many that are intense.

Many plants – tomatoes for instance – won’t set fruit if the nighttime temperatures go too high.  One of the most “certain” early predictions of the phenomenon referred to as climate change – and one of the most consistent patterns to have emerged – is the increasing overall gap between day and nighttime temperatures.

Several reasons account for this. One of the more intriguing is the general increase in overall evaporative and moisture retention capacity when the atmosphere is warmer. This can (and so far studies seem to suggest that in a mild positive to positive feedback loop it is), lead to overall increased water vapor from generally increasing temperatures.

Water vapor has both a cooling and a heating effect during the day.  The extremely short lived water vapor molecule is a reflection of climate itself and not a driver of it (despite one odd published “theory” – that itself winds up yielding a fairly interesting climate change information story – to the contrary). But it is at any one point in time an important greenhouse gas; in fact the predominant one, because there is a lot of it in the air.

During the day water vapor molecules act as greenhouse gases. And as with all atmospheric greenhouse gases, they absorb and re-radiate heat energy in the mid to longer wave length spectrum – which is to say almost no solar radiation (either incoming, or reflected off of the earth’s surface), but most thermal radiation (heat energy emitted by a body, such as the earth itself, or structures upon it).

But water vapor also acts as an atmospheric reflector of incoming solar radiation, increasing the overall albedo – or sunlight reflecting capacity – of the earth/atmosphere, and causing a higher percentage of sunlight to never reach the lower atmosphere/surface of the earth (where some is then in turn absorbed as heat energy) to begin with.

At night only one of these two phenomena occur. There is no incoming solar radiation, so the reflectivity question isn’t an issue.

But the re-capture of thermal radiation still is. This is energy emitted in wavelength form, and, specifically, the type of energy that is absorbed and re radiated in all directions by greenhouse gases – without which the earth would be a large almost lifeless ball of ice floating through space.

If water vapor levels are higher, more thermal radiation will be “trapped.” Particularly at night.

Regardless, the gap in day and night time temperatures, in many regions across the globe, has considerably narrowed, which as it continues, will also continue to have more and more intense consequences for at least some of the plants upon which we rely.

The list goes on. But this is a start. We probably “aint seen nuthin’ yet,” for very fundamental scientific reasons (along with a lot geologic and modern era data), that are largely being mangled, overlooked, confused or turned into something they are not, while the entire climate change issue is as well.

But while agriculture, including its extensive use of and indirect reliance upon fossil fuels, and large impact upon the landscape, is the rarely talked about main contributor to the phenomenon known too popularly as climate change (the issue is really the multi million year – or geologically radical – alteration in our atmosphere’s long term heat “trapping” quotient), the dance the world is going to have with this mainstay of existence – providing enough food – is probably going to be an increasingly interesting one.

And by “interesting,” for many poorer areas and peoples of the world, this means “bad.

Potentially, extremely bad.

This is also ironic, because some groups that have not necessarily been outspoken advocates for the poor, when it comes to climate change, have suddenly become the “Mother Teresa,” of indigent poor advocacy, on the ill conceived and highly ironic assertion that addressing climate change (not climate change itself, rendering informed scientists/anthropologists extremely frustrated in the process) will harm the poor.

But what is really going to harm the poor in particular is the radical alteration of our atmosphere – again, reflecting a change that has now taken us back to levels not seen in millions of years,and a large portion of which has occurred in just the last 50 or so years alone; and which is right now still occurring at geologically breakneck speed.

It’s just a question of how much we mitigate it, and how sensibly, and quickly, we do so. Both in terms of the U.S. leading the way – which will increase our moral ability as the world’s bully pulpit and most powerful (and somewhat feared) nation to encourage change, desire to do so by our show of faith, and an increasing return by other countries knowing that more and more of their own effort and the efforts of others is contributing – and elsewhere.

Major Methane Spikes From Warming Sea Beds Are Compounding a Vastly Underestimated Climate Change Challenge

This piece has been completely updated and revised, with major new sections of information added, and re-posted here.