Home » Posts tagged 'Atmosphere'

Tag Archives: Atmosphere

Climate Change, “Skeptics,” and Models: How Climate Change is Repeatedly Mischaracterized

 

Is “climate change” real because models tell us the earth is warming?

Yes and no.

Climate change is real because geophysics tells us the earth’s climate should be increasingly changing, and, overall, likely warming; data tells us this is in fact happening and has been for quite some time; and models try to “model” this out, and help us hone our understanding of the issue and more directly provide projection ranges for the types and extent of changes we’re likely to see over time.

Yet it’s constantly claimed that anthropogenic climate change can’t be real, we don’t know enough to conclude we’re likely altering our climate, or that climate scientists “aren’t credible” because climate change models haven’t (and can’t) perfectly map the exact path of atmospheric temperature change well in advance.

This popular but wild assumption (and claim) is badly mistaken.

This insistent if also badly mistaken claim and “conclusion” it conveniently produces is also a key example of the broader pattern of so called climate change “skepticism”-a badly mislabeled socio-cultural political adherence to the desired belief that humans aren’t likely altering our long term climate in a significant way.

And which,  of course, being as it’s badly mislabeled, is not “skepticism” at all – either in the scientific or dictionary sense, but is almost the exact opposite; ultimately consisting of the pursuit or acceptance of any claim, argument, criticism or notion that seemingly reinforces the often predetermined belief or heavily desired conclusion that we’re not altering our present and future climate, under of course the argument (and much convincing) that it is “objective” and “reasoned,” rather than the advocacy or a pre determined conclusion or belief – or the continuation of misinterpretations of the issue in order to keep that belief. Which, of course, as the claims with respect to simply models and predictions alone illustrate, it is.

That is, if one thinks models are what “establishes’ climate change (they don’t, though a few climate scientists reasonably imply they do, as they’re an attempt to somewhat document and more detailedly attempt to project what we’re doing rather than just grapple conceptually; an important part of our understanding on the issue; and further support for the basic climate change construct), and that when models don’t predict exactly what happens this somehow means climate change is less significant or less real, is misinformed on the basic issue.

And if someone doesn’t have the basic issue right- no matter how zealously they insist, or how popular their usually (but not always) politically far right wing site climate change “column” “news” or takes are (and which are often popular because they don’t have it right but “smartly” seem to reinforce what people want to believe) – then they probably don’t have a better understanding of it than actual professional climate scientists.

But what makes so called climate change skepticism far more belief in a desired conclusion rather than scientific skepticism of the (anthropogenic) climate change phenomenon, is that it reflects – in fact requires – adherence to a belief (i.e, we’re changing long term energy recapture, but that change in energy is somehow not altering earth’s expression of energy – aka climate), that has no real foundation.

Climate change “skeptics” confuse the entire issue and “poke holes” (or at least that is the belief – again, see below – as poking real holes, so to speak, are part of what good science is all about),  in the claims and data of anything that goes against this skepticism belief. (And once again why it’s the opposite of actual scientific skepticism necessary for good science – aka the pursuit of physical truth about the physical world around us; as it doesn’t seek to objectively assess the issue, but under the guise of “being objective” seeks to refute it by any argument that might seem to work.)

But to refute a “theory” that over 97% of climate scientists deem accurate (with the few who don’t, almost to a person, being ideologues who consistently also misconstrue the very basic issue itself in order to continue their alleged “view,” again, see below) – or even 2% of climate scientists deem accurate – requires showing why it’s wrong; not cherry picking slivers of it, taking issue in ways that are either irrelevant to the issue or mischaracterize it, or that do nothing to support the contrary “skeptic” claim; which in this case is that we’re not significantly altering our climate as leading – and also the great majority of – climate scientists vehemently assert, or that there’s a good probability we’re not. Yet nothing supports this but hope (and even that is extremely weak given the basic geophysics), or unyielding fealty to a predetermined conclusion.

Hope isn’t skepticism. Hope, and unyielding fealty to a predetermined conclusion, are belief.

There’s also the complicating factor of risk, as well as the fact that this isn’t a lab controlled or even field controlled experiment, but a zero controls, decades to centuries long, global “experiment” of immense scale: And to say we are doing “this” to the climate requires knowing exactly what climate would have been in the absence of mankind’s activity, which by the nature of climate would be impossible. (And while it would show we’re changing it, it still wouldn’t address the more important issue of more systemic changes to our earth, earth surface composition, and atmospheric system that drive future climate.)

To jump from this basic physical reality to the idea that therefore the issue is not significant or we’re not even altering our climate – exactly what skeptics do, if contained in all sorts of nice sounding rhetoric – is exactly what the belief of so called “skepticism” requires.

Also, saying we aren’t “100 %” sure, therefore climate change isn’t relevant or shouldn’t be addressed, would be like saying that though we launched a boomerang asteroid that stands a significant chance of boomeranging back and hitting Arizona, U.S.A – detonating multiple square miles and ultimately changing earth’s climate by several degrees in average temperature, etc. – instead of boomeranging into a nice safe “asteroid” orbit, it’s nevertheless not an issue because we can’t say with 100% certainty that it WILL hit earth.(Although the argument that we can’t say with certainty that we are altering the climate is extremely weak, given basic energy dynamics, physics, and what climate is.)

That is, despite the mountains of misguided and always irrelevant cherry picked or issue misconstruing rhetoric that

  • our politicians;
  • certain ideological groups;
  • “conservative,” often advocacy oriented “news” sites and channels;
  • certain ideological think tanks that erroneously conflate one issue (their presumption that capitalism is valuable, and “real” growth occurs, only if we produce what most quickly explodes us with the highest quantity of material possession in an ever onward and fast as humanly possible upward spiral regardless of pollution, earth or individual health altering consequences rather than producing to improve the quality of our  lives which includes both material possession, improvement and less destruction of our very own world that we rely upon in the process therein), with another (the purely geophysical risk and science assessment issue of anthropogenic climate change);
  • social media and the Internet

..are near drowningly awash in, this very misnamed “skepticism” is still a belief that has no real scientific support; let alone any plausibly vetted scientific theory in support of it.

Skeptics claiming they are practicing “real science,” or attacking criticizing, mocking or impugning climate scientists, “hockey sticks,” Al Gore’s jet rides, or climate change activist claims, is not actual scientific support or plausible theory for the idea that while our atmosphere is suddenly capturing far more energy (incontrovertible) by its – by recent geological standards – suddenly extremely elevated long lived greenhouse gas concentrations, this increasing energy is somehow not relevantly increasing earth’s net energy; or if it is that increase in energy is somehow not altering climate. (Let alone that if it’s somehow not, this would have to very oddly be the case even at the same time as we’re starting to see geologically significant, long term consistent, accumulating, and increasing overall signs of just such energy shifts, and which if bizarrely unrelated to the huge ongoing and more important sudden increase in net captured energy by changes in the long term chemical structure of the atmosphere that at its foundation is “climate change,” would constitute an extremely bizarre “coincidence” on top of the even more statistically unlikely and independent fluke of just such an enormous ongoing increase in overall earth atmosphere net energy capture somehow not increasing earth’s overall energy level, and thus ultimately somehow not altering its climate. )

That is, the so called, and badly mislabeled “skepticism” phenomenon is a belief that has no support, apart from the appearance of and thus “belief in” the existence of such support, that comes from:

  • Piece meal – and often highly erroneous – critiques of cherry picked aspects of climate change assessment, statements, and carefully selected and even still often misrepresented slivers of data;
  • The mistaken conflation of what we don’t know with what we do;
  • The mistaken conflation of the very essence of scientific discovery and pursuit – assessment, mistake, correction, adjustment – with the conclusion that therefore the basic underlying idea that is well understood and rests upon incontrovertible and often overlooked fact, is itself therefore “wrong”:
  • The conflation of the idea that because things have been “wrong” in the past, that assertions that we want to be wrong now – such as “man is changing our climate” are therefore wrong now;
  • The transcendence of the general over the specific: e.g; “science is the belief in the ignorance of experts” – a quote by the physicist Richard Feynman to keep us mindful that science is the pursuit of knowledge, not always knowledge itself, and a”skeptic” favorite repeated ad nausuem, almost as a “magic card” to pull out in order to simply disregard what one doesn’t want to accept or to somehow support what one wants to believe, under the fake auspices of having Richard Fenyman or “reason” on one’s side. That is, what matters is what climate change is and what we do and don’t know – the specific – not Fenyman’s quote, which can just as easily (but no more ludicrously) be used to say the earth is flat, gravity doesn’t exist, giraffes fly, or humans routinely self levitate because, if science says otherwise, well, “science is the belief in the ignorance of experts.” Ano e.g;  what matters is not that huge scientific majorities can be wrong, but why they are wrong, which in the case of climate change “skeptic” claims requires getting the actual climate change issue itself wrong, or cherry picking the issue apart, which on a complex issue can always be done to reinforce any belief one wants to hold;
  • The mistaken conflation of individual prediction and speculation about specific events and timelines (see, again, opening paragraph) that are inaccurate, with the conclusion that therefore the far different and otherwise unrelated basic fact we are almost assuredly and significantly altering our long term climate is as well.
  • The constant conflation of the irrelevant with the relevant, and very much related;
  • Basic misconstruction of the actual issue itself.

That is, the pattern referenced at the outset.

In other words, this belief in incorrectly termed “skepticism” of the anthropogenic climate change phenomenon (or slightly more reasonably, yet very incorrectly, “skepticism” that this phenomenon should much matter to mankind), is incorrectly labeled. And understanding this is important to understanding the issue, and more importantly, how the issue is presented, perceived, and discussed (and ultimately responded to), as well.

“Climate change isn’t real because [this or that] model was wrong” or, much more commonly, far more right than mere randomness would suggest but, – as predicting the exact path of future climate is a near impossible task – of course off by some degree or another, is another example of this pattern, as well as an example of the basic misunderstanding of the actual anthropogenic “climate change” phenomenon that this “skepticism” pattern attempts to refute, disregard, or argue against.

That is, “climate change isn’t real or significant” because models can’t tell us an exact global average of any generic measurement – such as ambient air temperature – or exactly what climate will be in any one region of the globe, falsely, and somewhat ludicrously, presupposes that for it to be real we would have to be able to not only predict exactly what earth’s climate will do (both regionally and globally) – or would do but for our own impact upon it – from now well into the distant future, but suddenly be able to also do so with the geologically radical increase in long term recapture of thermal radiation that we’ve suddenly occasioned within our own atmosphere.

It makes no logical sense. Yet it sounds good if one wants to believe climate change isn’t a big deal, is otherwise misled on the issue, or (heaven forbid, even though it actually includes a large proportion of the human population), confused about it -with most such confusion coming from those who are adamantly certain they are not confused about it, but in fact along with “completely objective” cohorts online are convinced they  – not actual professional climate and geophysical and atmospheric scientists practicing science – are doing the real “science.”

But if a person believes an enormous ongoing additional influx of energy into a complex, global, open system isn’t very likely to change what is ultimately an expression of energy within it if man kind can’t simultaneously model out the precise future well in advance, the person either has very little relevant understanding of the actual issue (something which those who remain “skeptical” of climate change work hard to self convince of the opposite), or is simply bent on “denial” of it by any means of advocacy possible.

Nevertheless the use of model imperfection – both as self sustaining “skeptic” refutation of climate change, as well as confusion over what the basic climate change issue actually is – runs rampant throughout the western world, and yet is barely covered.

And it also, again, sits among countless other examples of the very same pattern of trying to ‘refute’ the idea that anthropogenic induced net increases to earth’s total atmospheric energy recapture will somehow not effect climate, by almost any means of advocacy that can be concocted, and seemingly reasonably presented or believed.

And in misconstruing the role of models in assessing the reality of the anthropogenic climate change phenomenon, as with all other examples of the same pattern, so called “climate change skepticism” once again couldn’t miss what the issue is by a wider mark:

That is, predicting the exact path of future climate is almost impossible.

So, again: the fact we can’t predict climate’s path well in advance and precisely – rather than generally and with margins of error, doesn’t have anything to do with whether man is severely impacting climate against our own interests. (And particularly against the interests of the world’s poorest citizens and regions – citizens and regions which also, ironically, are often those that contributed the least to this problem.)

But if precisely predicting future climate wasn’t already difficult enough, as briefly noted above, it’s been made far more difficult by this sudden large and ongoing influx of energy onto an already complex and sometimes varying global system of energy and its expression – our climate system.

This new and accumulating addition of energy is a result of a sudden increase in atmospheric levels of long lived heat “trapping” gases: Enough of an increase, geologically speaking, to almost instantaneously raise those levels to atmospheric concentrations not seen on earth in millions of years: Possibly even as long as fifteen million in the case of the “lead” greenhouse gas carbon dioxide (but more likely at least several million or so); and who knows in the more enigmatic and often very underestimated case of methane. Yet methane has at least almost assuredly risen well above – in fact, more than doubled – the highest average levels that earth has likely seen in nearly a million years (graph found at EPA; see  the left chart in particular, which puts the recent rise – appearing as a sharp spike straight upward on the far right side of the left chart – in some type of geologic perspective):

ghg-concentrations-figure2-2015

Not only would this increase in the long lived gaseous particles that continually “trap” heat energy almost invariably have to affect what’s ultimately driven by net energy – i.e, climate – in the phenomenon  commonly referred to as climate change –  but the overall trailing geophysical picture has been heavily corroborative of just such an affect, as earth’s key longer term climate driving systems – such as our world ocean and the world’s vast ice sheets that both modulate and help determine long term climate, are starting to significantly change in response as well.

Even the long term ambient average atmospheric temperature pattern alone has been corroborative of a slowly accumulating – if, in air temperatures in particular, lagging, effect. (The effect of our actions into overall climate has a large lag because as energy accumulates it slowly changes the aforementioned stases systems that retain most of our earth atmospheric system’s energy; and which again modulate and drive long term climate. And into which most of the increase in net accumulated energy is now pouring – changing the conditions that alter not just present, but, cumulatively, future climate.)

Again, this can’t be repeated enough – a constant long term pattern of temperature increases has occurred even though there’s a large lag between this long lived atmospheric greenhouse “energy re-absorbing” gas increase and overall visible (atmospheric) climate impact, as our planet’s ongoing change in re-absorbed atmospheric heat energy continues to have an accumulating effect on its major systems that, along with the atmosphere itself, drive climate.

That is, these are systems that drive climate, along with to some extent the sun when solar output changes. Though in the modern era the effect of changes in solar output on climate has been minor in comparison to anthropogenic effect. And for the last three decades plus, the effect of changes in the output of the sun has been in the exact opposite direction from “skeptic” claims- that is, it’s been in a “cooling” direction. In other words, the effect of changes from solar output have had a slight net cooling, or climate change “mitigating” effect, so arguing that anthropogenic climate change is not real or is less real because of the sun is largely irrelevant, and to the extent it is relevant, has it opposite. Right now its somewhat”hiding” the effect (if relatively slightly.)

Note though that “skeptics” take false refuge in their desired and anti-geophysical reality (or simply convinced) belief system, and continually also assert irrelevant -and incorrect – things like “the sun drives climate!” The sun doesn’t drive climate. Earth’s energy balance, its atmosphere, oceans, ice sheets, trapped and released long term greenhouse gases, and reflectivity – that is, how much sunlight is reflected back as short wave radiation that is not “captured” by the atmosphere, versus absorbed and later re-radiated as  longer wave radiation that is – shape and drive climate.

The sun is the source of energy that makes climate possible in the first place.

Climate though, as just noted, can also be changed by changes in the output of the sun, along with changes in the tilt of the earth and other external affects that change earth’s total net energy: Such as the impact of an enormous meteor. Or a sudden major change in our atmosphere’s long term molecular “trapping” of radiated energy through a geologically sudden and major release of long built up greenhouse gases from the earth’s surface – such as a fireball from space that suddenly melted much of the earth’s permafrost regions and released large amounts of trapped methane and carbon dioxide (and changed its albedo) – or, say the effect of a highly advanced species that suddenly started changing the surface of the earth and digging beneath it to release long trapped greenhouse gases as fuel and didn’t see -as part of the process of “growth” it thought it was fueling – to alter to more modern and self benefiting processes.

But it’s worth noting yet again that while the sun doesn’t drive climate yet “deniers” (or non knowers – in some cases, it is argued, willing non knowers) of relevant climate change information, and mislabeled “skeptic,”following the pattern of any kind of argument to advocate a desired position or belief, constantly assert that the sun does: as if this has anything to do with the very specific if large and broad issue of anthropogenic – or man induced, long term climatic impact upon the overall system that does exist (which gets its energy to even exist as a system rather than an absolute zero chunk of lifeless matter  in the first place); when it doesn’t.

Yet changes in solar output can affect climate, and certainly temperatures. And while (very slowly and very long term), solar output is rising, again, for over 30 years – not even a microscopic pinprick of time when it comes to the length of the sun’s existence – solar output has been slightly lower than the trailing norm and receding, which if anything would decrease total net energy reaching earth.

Yet in terms of our geologically new, extremely sudden, and very sharp ongoing accumulation of net energy (what more accurately characterizes “climate change” than the overly popular but issue confusing “temperature rises) we now see significant and accelerating melt of the ice caps on both ends of the earth; radical changes in south polar area winter sea ice extent as cold runoff from increasing glacier melt both adds a layer of non saline, colder surface water and insulates it from the slightly wamer water below, and a major shift in the Southern Annular Mode wind intensities over many decades past drives more and more of the newly formed ice northward, making room for new winter melt; the ongoing march of dwindling arctic, and truly polar, summer sea ice extent; the slowly increasing signs of change to total net northern permafrost and lower glacial area coverage and land surface temperature; the increase in previously long frozen methane gas releases and the attendant warming of long stable sea bed floors; and the rampant pace of world ocean energy heat accumulation.

But again, with respect to just air temperature alone, which from the vast increases in ocean temperatures should, if anything, if earth wasn’t accumulating net energy, have been colder with so much extra net energy going into accumulating long term ocean heat, notice the last few years in the chart just below, representing new global yearly mean ambient temperature highs: With 2015 beating the previous mark by what a larger deviation above the norm than any prior record; and January and February 2016 (not included) both setting records – with February absolutely obliterating the record for hottest monthly anomaly above the norm – as with January (and December, 2015 before that, and October 2015 before that), for any month up until that point ever recorded. [Update: since then multiple months, in fact nearly every month of the year 2016 up through September, set a record for the hottest ambient global air temperatures for that month ever recorded, with again multiple anomalies records set for highest average temperature above the norm for that period ever recorded.]

All this has occurred, again, while, more significantly, the world ocean continues to gain heat energy – that is, drawing it, and massive amounts of it – out of the atmosphere on an ongoing net basis: And yet still, this in overall temperatures (chart by NASA):

Fig.A2

On the other hand, once again, the inaccurately named phenomenon of climate change “skepticism” is the belief climate somehow isn’t being altered in any meaningful way as a result of this sudden yet long term and accumulating energy shift,* and that there isn’t even enough of a reasonable (let alone likely) chance of it to act sensibly mitigate it; or at least stop adding to it.

This socio-cultural phenomenon of mislabeled “skepticism” is also usually driven by considerations that have nothing to do with climate change itself, including widespread but likely very misplaced economic presumptions. And it is also often tied to unrelated political ideologies; which in turn is usually the driving force for the most fervent anti climate change “belief” advocacy that in turn has led to a great amount of misperception on the issue of anthropogenic climate change, as well as a sort of “self sealing” belief on the issue among many who want desperately to believe that man isn’t affecting the climate or that it doesn’t matter if man does.

And this socio-cultural phenomenon of mislabeled “skepticism” is also a belief – or, in pursuit of that belief, a claim – that anything we observe signaling overall change – that is, corroborating what basic atmospheric and geophysic theory would dictate – is largely some bizarre fluky coincidence,” because, namely, earth has changed before.

The three current leading candidates for the U.S. GOP 2016 presidential nomination, all fairly to very far right wing, adhere strongly to this general belief; well exhibited here by Ted Cruz, here by Donald Trump (though he denies that also, despite a consistent, repeated pattern), and here, explicitly, by Marco Rubio.

But again this represents a pattern of advocacy by irrelevant, miscontrued, or illogical (but logical “appearing”) arguments in order to support a belief. For – and this can’t be repeated enough, but, unfortunately, as with many such things on climate change, rarely is – the fact that earth has changed before has nothing to do with whether we’re changing it now. And the only relevance of the fact that (at times over its approximately 4,000,000,000 year history – of which the last 2oo years represents only 1/20,000,000th of its existence) earth’s climate has changed significantly or at least somewhat rapidly, is to suggest that earth’s climate can and does change.

In other words, it’s an argument supporting climate change further, since the only argument – although there is no support for it – that our huge long term changes to the atmosphere’s structure aren’t much impacting future climate is that the earth is somehow self stabilizing in a way that specifically and uniquely benefits modern man, and thus for some strange (and unknown) reason is very resistant to the effects of geologically sudden and ongoing net shifts of additional energy.

It’s also yet another telling sign of climate change skepticism that one of its main arguments – anthropogenic climate change isn’t real or it doesn’t matter because “climate has changed before” – is an illogical supposition (if earthquakes happened before and we caused one – or a thousand – now it wouldn’t make it any less relevant; nor is it related to the issue of what is happening now), and to the extent the statement itself is true – climate has changed before – it actually further supports the notion of anthropogenic climate change rather than “refutes it.” Yet its used merely because it’s a nice sound bite, a way to cling to a belief, and sounds good.

The aforegoing – if horribly poor – argument is also used because of confusion, and often poor illumination, on the climate change issue itself, as if the issue consisted of these “perplexing” set of signs of a changing future climate, and we humans were desperately trying to come up with a reason why: In which case it would be logical to consider that it may not have an explanation, or at least a relevant one or one we can do anything about, and may just be a fluke event that “happens” because “climate does change,” even though the coincidence of such signs of extensive change in our ice caps ocean permafrost methane release regional pattern changes volatility and overall global ambient air temperature creep  as we are seeing right now would, for any random 100 year period of time, as best as we can tell from the geologic record, be extremely unusual for any random 100-200 year period.

But in fact the issue of climate change is exactly the opposite – though again poor focus on and illumination of this does a great disservice to good understanding on the issue, often shoved aside due to the widespread presumption that everyone should “just know” because “we all know” or “scientists tell us” or “we can see its slowly getting warmer.”

That is, it’s not the signs of change that are the issue – they are nice things to report and talk about, to help give a ‘feel’ for the issue on top of the far more important but less resonant “idea.” The signs of change simply add corroboration that is extensive. (Corroboration that, broadly, was widely predicted and expected despite yet another false skeptic meme – similarly, like all the others repeated ad nauseum millions of times until simply believed as gospel – of how “scientists predicted ice ages back in the 197os!” when even back in the 1970s, and with far less understanding of (and data on) the issue scientific papers touching the topic predicted warming over cooling by over a 5:1 margin).

The real issue is the sudden, major, long term structural change to our atmosphere’s long term molecular chemical composition, resulting in a geologically radical increase in the long term concentration of long lived thermal radiation absorbing and re radiating molecules, in essence trapping more energy long term; either being somewhat offset by a net decrease in the most common “greenhouse gas” – water vapor, which would be awful since it would only greatly exacerbate the already potentially most devastating result from climate change – increased drought and water issues as a result of geo-regional changes as well as more intense (and thus much more subject to runoff as well as flooding, waste, and intermittent periods of longer term dryness or drought) precipitation event patterns, a result which both theory and data contradict; or being augmented by, in a warming world, an overall increase in water vapor, which both theory and data support.

So again, in a nutshell, the issue is this long term structural change to the atmosphere’s long term heat or energy trapping quotient.  This would increase net earth atmospheric energy, which would in turn alter earth’s climate, which ultimately is a direct reflection of energy.

The issue is not the exact opposite – wow, the climate seems to be shifting, why is that? But rather, instead “how can the climate not shift if this atmospheric change is happening, but as scientists we don’t presume, so lets keep searching to see if there is any way it can’t or won’t or might not.” (And despite the best efforts and in many cases global zealousness of the anti climate change cause, including by a few actual “‘skeptic’ climate scientists” who despite popular perception otherwise are so few in number they can almost be routinely ticked off by name, nothing has been so discovered or plausibly articulated that passes muster). And “let’s also look at the accumulated and accumulating data to see if it somehow ,despite a complete dearth of explanation why, suggests a different story.”

Not, again, “why is climate changing” (in which case the otherwise irrational skeptic argument that anthropogenic climate change isn’t real because “climate has changed before” would be relevant), but “how could it not change?” Valid theories – as opposed to fanciful, if often gussied up with tautological and issue misconstruing “logic” ones to support this, don’t exist. And they don’t for basic reasons – we’re changing earth’s energy and energy ultimately drives climate and there is nothing magically offsetting that energy.

And the data that we do see, if anything, corroborates what we would heavily expect to see.

But of course, following yet again the very same pattern of advocacy to fit a belief, and not engage in healthy skepticism of “claims” (the irony of the acceptance of claims to “refute” anthropogenic climate change by “skepticism,” as well as the absurdity if not logical “appearance” of calling believers in earth’s “Gaia like” climate self modulating to offset mankind’s own patterns for mankind’s benefit “skeptics,” is also part of this same remarkable pattern), so called “skeptics” self selectively cherry pick the data to once again advocate a misrepresentative picture to fit preconceived and desired belief.

Claiming climate change can’t be real or sufficiently reliable or is somehow less valid because models can’t, and so often don’t, predict the exact course of measurable change over a precise time period is part of this very same pattern; and once again fundamentally misconstrues what the basic issue even is. (But, see below, overall climate models do a fairly good job given the complexity of the task, and overall have a positive correlation with climatic direction that were anthropogenic climate change not real could not reasonably be explained by mere fluke alone. And not to mention the fact that climate model or individual scientist prediction “mistakes” are also routinely if irrelevantly advanced to assert some sort of refutation or rejection of anthropogenic climate change, while the the better predictions, or, more accurately projections, by individual scientists and by climate models, and of course the array of under projections of intensity of climatic and earth changes effects by both specific individuals as well as models, are, simultaneously, all completely ignored – which is yet again part of this same pattern.)

In essence, dumping a huge amount of additional energy into it our climate system, as we are doing right now, is more likely to have a longer term dramatic effect than if the long term geophysical record suggested that climate was somehow highly static. (Note that in one of the most bizarre “science” papers published in modern times (in the off topic and seemingly will accept anything Chinese Journal Science Bulletin by the way), and one of the extraordinarily rare, allegedly vetted papers claiming that climate change is relatively insignificant, a noted group of “skeptics” simply assumed that climate was very “stable,” thereby directly contradicting a main claim of climate “skepticism” because they needed to in order to create what’s best described as a non geophysical earth related but instead “closed circuit” model that was designed to support their conclusion, rather than lead to wherever it did – and the opposite of actual science. They also, and outlandishly even for a bad high school paper, simply assumed that any increase in atmospheric energy would be instantaneously reflected in climate; which defies the basic reality of earth and its geophysical systems in a way that, to put it charitably, is bizarre for scientists who ostensibly have at least some relevant knowledge of the issue – let alone to be publishing papers on it.)

And again, a random one hundred year period (say, 1915 to 2015 or 1916 to 2016) also represents only one-forty millionth of earth’s geologic history. So the fact “earth has changed before” wouldn’t be a very satisfying explanation for why it’s changing so much and so quickly now in this 100 year period – particularly in the latter end – even in the absence of any knowledge of our atmospheric changes.**

It would also be pretty remarkable for earth’s oceans, ice sheets, and even ongoing ambient global temperatures, to show the increasingly significant signs of change they’re showing – and in an upward accumulating energy direction just as anticipated – at the same time (a sort of geologic “pinprick” of time) our sudden yet major addition to earth’s “insulation layer” – which changes total net absorbed energy – was somehow not relevantly altering climate.

_______

In short, being able to predict future regional and global climate – as if otherwise almost as easy as a three day local weather forecast – isn’t connected to the question of whether (in a sort of long term, completely uncontrolled, global experiment with, to boot, a major time lag between cause and effect) suddenly and dramatically increasing the atmospheric concentration of long lived energy absorbing molecules is invariably changing the climate and presenting a range of long term climate altering possibilities or severities (risks), and in any event very likely a long term average increase in overall temperature.

But that doesn’t mean scientists, through a solid understanding of the issue and climate dynamics, haven’t been able to come up  with models that aren’t useful. And in fact, models haven’t even been that far off overall – and more importantly have been far more accurate than not – even more than previously thought. And for whatever it’s worth, their accuracy in comparison to “skeptic” forecasts, which are predictions of what people want to happen, is absolutely “off the charts.”

Thus the main basis of skepticism – as with essentially all the others – misses what the issue really is.  Models aren’t climate change.

Models are supportive.  That is, they help further validate and solidify our understanding of the issue, because they have not only been remarkably far from simply meaningless random predictions, overall they have been fairly accurate in terms of projecting relevant ranges; and, though scientists would always like to forecast things exactly before they happen – and continually working on and attempting to do so produces better and better understanding and projections – models realistically are ultimately just an attempt (albeit an important one) to try and approximate or project what’s most likely to happen from that impact, and approximate some range.

One of the grandfathers of serious climate change concern, and vast early knowledge of the issue – James Hansen – was even part of the large team that came up with one of the first powerful set of long term projections based on our ongoing alteration of the atmosphere – back in 1981. (More here.) They’ve turned out to be very accurate; ridiculously so if one believes the ambient temperature signs we’ve seen (forget about the more important and larger upward changes in ocean and ice sheet heat energy accumulation) to be a largely random event, at the exact same geologic time our anthropogenic actions have changed the atmospheric composition of heat trapping gases to levels not seen on earth in millions of years.

For the climate change “skeptic” who is intent on staying a skeptic, this probably won’t matter. But it’s an important part of the issue to be covered, because the confusion over models has played an extremely large role in overall perception – and more importantly – misperception – on climate change: As this fact -that we can’t predict exactly what will happen – has erroneously served as a main basis for refuting the fact that atmospheric alteration is both significantly affecting climate, and even more importantly, creating a large risk range of potential affects.

It’s a big part of the story of climate change – one that hasn’t received fair or balanced coverage. And covering the relevant arguments and facts herein would help further better understanding on, and assessment of, the issue.
___________
*When the surface of the earth is warmer than the surrounding air, it emits thermal radiation, or heat energy.  This energy is of medium wavelength, and it is absorbed and re radiated outward in all directions (and re absorbed and re radiated outward, and so on), very much unlike reflected sunlight, which is short wavelength radiation and passes through the atmosphere unabsorbed.

**Again, the process of anthropogenic limate change”skepticism” seems to also cherry pick out slivers of data to claim that earth isn’t really changing all that much, and even less persuasively: except to the hundreds of millions of people in the United States and Britain alone – including many in regional and national legislatures – who either intrinsically have this belief, or have been convinced of it through a near mountainous avalanche of just such advocacy and mis-impression.

The Climate Change “Pause” is a Bad Fiction

Last Updated March 4, 2016

CLIMATE change is not air temperatures. Air temperature is one part of the pattern of increased total earth energy that constitutes climate change or “global warming.”

Air temperature is also a very variable part of the total global warming phenomenon. Other key earth systems that are directly affected by climate change – such as oceans, our near polar regions’ enormous ice sheets, and vast expanses of permafrost areas both at the bottom of the sea and atop the land – play a large role in how much air temperatures ultimately increase, and climate changes, and right now are more important than air temperature changes, though dwarfed in coverage and attention by the latter.

What mattters is the total heat accumulation of the earth – oceans, ice sheets, land surface, and permafrost areas, and our oceans can absorb an enormous amount of energy. As can ice sheets, as they slowly warm and start to turn some of their substance into water

So shorter term geologic changes in the general average rate of ambient global air temperature rise is not a “pause” in climate change or global warming, or anything of the sort. (Unless the otherwise misleading term “global warming” only and specifically refers to ambient air temperatures, and ignores the larger, far more complete, and far more important picture.)

It’s a change in ambient global surface air temperature rates; which were volatile (and unpredictable, particularly over shorter periods of time) both before anthropogenic climatec change, and even more so as a result of it.

But even the idea that more general ambient air temperatures have “paused” is itself largely fiction, as the temperature trend into the 21st century and right up to this very month continues, and is now increasing in rate again. As it had as well into the 90s, and as part of what climate change is – high and at least somewhat imperfectly predictable variability: Not this imagined phenomenon of low short term variability, and nice symetrical linear progression that superficial or incorrect analyses, soundbite news coverages, and most so called “skepticism,” implicitly frames it as.

That is, changes in the rate of temperature increase alone are as apt to be occurring as we march forward in time as not, and based upon what climate change is: Namely, a highly variable unpredictable and almost definitively non linear alteration of the climate, as total earth atmospheric net energy accumulates as a result of a geologically significant increase in long lived atmospheric thermal radiation (earth’s “insulation layer”) that’s now occurred in an incredibly short geologic period – an increase now that in the case of carbon dioxide alone has reached atmospheric concentrations that the earth hasn’t seen in millions of years. And not only is carbon dioxide not only not the only gas of concern, another may wind up being as, if not in some ways, more important in terms of the risk of potentially rapid and large shifts or lurches in climate that continue to grow.

Additionally, recent studies further suggest that the short term decrease in the rate of temperature increase alone – changes which, again, based upon what climate change is, are as apt to be occurring as we march forward in time as not – didn’t exist.

Yet adding to the confusion (and a story worthy of attention), even quasi “skeptic” sites – such as the one by this frequent U.S. congressional climate change testifier, scurried to denounce the aforereferenced study. And did so while, naturally, once again completely missing the big picture. (Notice, for example, notice, among other things, the long extensive cherry picking of an unnamed “international journalist” in order to reinforce pre existing, and fundamentally incorrect, framing of the issue.)

But the hiatus re-analysis – the fact that the slight short term average air temperature increase rate either slightly temporarily slowed or didn’t – wasn’t that relevant to the bigger issues we’re presented with.

(Update: Note that while all this misguided fuss about a “pause” was going on, 2014 set a record for the warmest air temperatures globally ever recorded. Only it didn’t last long, because 2015 shattered the mark, setting a new world record, air temperature wise, for the warmest year ever, and shattering the 2014 mark. Then for good measure, January 2016 didn’t just set the record for the hottest global January ever recorded, it also set the record for the highest deviation above the norm, or anomaly, for any month of the year, any year, ever recorded in mankind’s history.  Quite the “pause.” And now, from the first set of data in – tropospheric satellite data, February 2016 has not just, one month later, beaten the previous record set in January for the hottest anomaly above the “norm” once again, for any month ever recorded, it smashed it.

On the other hand, the above referenced study suggesting no substantive decrease in the overall rate of increase of globall air temperatures in the first 15 years of this century, does add clarifying information. And it helps refine our body of knowledge regarding the process of climate and, in particular, temperature modeling.

Temperature modeling itself is something, of course, which following the same pattern of both misunderstanding on the basic climate change issue, and widespread “advocacy” against the idea of anthropogenic climate change, is in turn then  itself often misunderstood, and even widely misconstrued to fit a pre determined conclusionm and erroneously used to try to refute climate change.

This process of misconstruing future temperature modeling, or projections, is itself, again, part of a broader pattern of trying to reinforce a belief or “view” by any argument possible, rather than the dispassionate, objective assessment it professes itself to be. (Here’s a good example, very similar to what runs rampant on countless “scientific” sites, to some extent among almost half of United States politicians and legislators, and of which there are probably, literally, many millions of similar examples just on twitter alone – itself a great venue for soundbite rhetoric:

Yet this pattern of trying to advocate or perpetuate a desired view by any argument, despite a fair amount of counter productive disbelief about this fact among many who are more accurately aware of the real climate change problem, not only professes itsejf to be objective, but in order to continue belief in its conclusions, also generally believes itself to be objective; and in many skeptic circles, the group – and, presumably, unlike climate scientists – practicing “real science.” By conflating the phenomenon of climate change with air temperature alone, it’s also a pattern which is often inadvertently, if mistakenly, reinforced. (Albeit less so lately now that global temperature records are sudddenly being set at a fairly rapid pace.)

_______

Related to this, and helping to drive some of the misunderstanding that leads to incorrect if believed analyses and rhetoric on the subject, there is essentially a false idea that climate change, even now in its earlier stages, is largely air temperature, and again not the far more important net accumulation of energy that’s slowly affecting earth’s basic energy systems – including of course the ones that drive and shape future climate. This is causing a lot of misunderstanding on what the issue really is, as well as misunderstanding of the fundamental – and, in terms of amount plus speed, geologically radical – long term atmospheric alteration driving it. And it’s leading many to wrongly assume climate change is a sort of quick response to increased greenhouse gases – i.e., they go up, and voila, climate is different.

That’s not what it is.

Increased long term greenhouses gases do immediately absorb and re radiate more thermal radiation emanating off of earth’s various surfaces. But most of that increase in energy retention then goes into slowly re shaping our net earth atmosphere’s energy balance; changing our oceans, and even large swaths of permafrost, hard land surface and subsurface temperatures, ice sheet temperatures, and even ice sheets themselves.

And this, along with the atmospheric change originally driving it, increases not just the amount of potential thermal radiation to be emitted from earth’s surfaces long into the future, but also rehapes the amount of energy even absorbed in the first place, as earth’s albedo – or reflectivity – slolwly changes. And, further amplifying an ongoing process of change until a new stases is reached, long stable stores of carbon also begin to change, and release in the form of additional greenhouse gases – and in a potentially very dramatic way, powerful signs of which we are already beginning to see.

This is a simplification, of course, as ice sheets take energy and translate it into melting ice sheets, and not atmospheric or even ocean warmth.

But these in turn don’t just affect a host of processes, but slowly break down the long term stability of the climate moderating caps, ice sheets, and average global sea ice formation averages and, along with other processes such as permafrost and glacial melt, decrease the amount of solar radiation simply reflected back into space. And which, down the road, will then instead be emitted as much longer wavelength thermal radiation which is then “trapped” by the greenhouse gases in the atmosphere – increases and all – whereas reflected sunlight isn’t.

Ocean currents change, unpredictably; precipitation patterns change, unpredictably, as total net energy increases, the total potential for both more powerful and intense weather events increases, and both more and more water vapor is potentially evaporated from slowly increasing temperatures, with a warmer atmosphere then capable of retaining far more moisture, leading to unpredictable yet in many regions, likely almost complete shifts in not just volatility and precipitation event intensities, but precipitation patterns and weather patterns.

And so on.

It’s not just air temperatures, but a host of more complex factors, as earth’s system adjusts to the large ongoing increase in trapped atmospheric energy in an ongoing process that will only “relatively” stabilize decades to possibly even centuries after atmospheric levels of long term greenhouse gases have themselves relatively stabilized.

Thus, the goal should be to lower total long term ambient greenhous gas levels at this point, as the world’s leading glaciologists, and countless other experts, strongly suggest. Unfortunately, right now we’re still increasing long term ambient greenhouse gase levels. And, again, as permafrost regions melt and release carbon, and possiblly to likely sea floor methane eruptions start to slowly snowball, we may start to get a significant amount of amplifying help as the future unfolds; not help in reducing long term atmospheric greenhouse gas levels, but in further adding to them.

Is the Risk of Methane Being Greatly Under Underestimated?

Lately, in a strong sign of enormous change brewing in the arctic, methane levels in the region have been spiking to unheard of levels.

The reason is that on the heels of a multi million year and still fast accumulating change upward in earth’s long term atmospheric energy recapture, things are happening below the water’s surface (and in the many fields of (traditionally) near perpetual frost covering much of the northern land of the globe), that are in turn starting to affect what’s happening above the surface.

This is especially true when it comes to the “second” most important greenhouse gas, methane; a gas we may be greatly underestimating in terms of net future impact. And for some pretty key reasons:

Namely, the fact of increasing release of methane from otherwise long frozen deposits that our geologically radical atmospheric alteration is increasingly setting in motion. And the way we currently measure this gas’s importance. That is, based upon current amounts; the fact that more than half of it largely disappears within 10 years; and the fact we can lessen our own emissions which have, at least historically, largely contributed to methane levels’ sudden modern rise.

This current method of assesment that hinges on the fact methane doesn’t last very long, brings up a fundamental problem in assessing methane’s future impact if levels of methane in fact stay high or go higher: That is, the methane gas breaking down is replenished by new methane; and thus future effect estimations based upon most of the current methane in the atmosphere breaking down won’t apply, and total future effect will be greatly underestimated.

_______

Methane, or CH4, is a potent greenhouse gas – many, many times more effective at absorbing and re-radiating thermal radiation than its more popular cousin CO2.

In terms of earth’s accumulating net energy balance – the phenomenon a little misleadingly but very popularly called “climate change,” CH4 may be considered less critical than CO2. That is, if levels don’t continue to significantly rise.

But at about 1/250th of the current the atmospheric concentration, but perhaps as high as near 200 times the GWPe (or Global Warming Potential equivalent) of CO2 at any one point in time, methane still plays a huge role in the increase in thermal radiation energy recapture in our atmosphere, and the resulting long term earth impacts from it, that in essence constitute this infamous and often misunderstood climate change phenomenon.

Perhaps even more interestingly yet rarely noted, the total percentage increase in atmospheric methane over pre-industrial levels is also much higher than the total percentage increase in Carbon Dioxide from pre industrial levels. (Total concentration of atmospheric methane rose from roughly 750-800 ppb, to just above 1800 –  an increase of around 100%- while concentrations of carbon dioxide rose from roughly 280 or 290 ppm to about 400 – an increase of around 40%.)

Thus the total net effect of modern industrial era increases of methane on earth’s climate shows as a much higher ratio to carbon dioxide than when just the relative total amount of each gas in the atmosphere – which includes all of the gas that reflects pre industrial levels as well, as normally done – is considered.

If the total energy recapturing effect of the increase in trailing methane levels over pre industrial times is considered in relation to the total energy recpaturing effect of the increase in trailing carbon dioxide levels over pre industrial times, the overall impact of each gas is closer than the wide disparity in importance normally attributed to each. (Methane increases are at about a 1:110 ratio to carbon dioxide increases over pre industrial times, and methane is potentially more than 110x as effective per unit of mass, as methane, at recapturing energy than carbon dioxide, although there are limitations concerning how much of this effect is realized at any point given a few considerations briefly referenced below.)

The effect of any unit mass of methane (that’s not replaced), over a longer period is far less, however. For instance, methane is estimated to have only have around 25 times the warming effect of CO2 over a 100 year period. (And about 85 times over a 20 year period.) This is because over a 100 year period methane only exists as methane for a small fraction of the time; and over a 20 year period it still exists as methane a minority of the time, with slightly more than half of it gone after just 10 years.

So since it breaks down somewhat quickly, if we’re trying to gauge the future effect of the gases in the atmosphere right now, it makes sense to use a long time period – such as “100 years,” the most common figure – to estimate methane’s potential future climate change impact; and thus project that impact as much lower than if we didn’t otherwise do this, since most of the gas won’t be methane during the great majority of the period.

But, if methane stays at current levels or goes higher, this doesn’t make any sense: The same amount of methane being projected out over 100 years on the far reduced basic, will instead continue to be in the atmosphere, and thus have an effect many times greater than will be yielded by using the far lower “warming potential” for each gram of methane that, essentially, is largely based upon most of it not existing during that time period.

Modern methane levels, just like carbon dioxide, have also essentially shot straight up in relation to the long term trailing geologic record. And there’s high risk of them not only staying high (making current assessments of methane’s future impact significantly underestimated), but climbing higher still – possibly even exploding higher over a relevant span of time in the near geologic future:

For – and well below the radar of most modern society – methane levels in the arctic have recently been spiking much, much, higher.

And this increasing signal of arctic change, may be starting to tell a rather remarkable story.

Methane, and the Constraint of our Imaginations

Below is an EPA graph that on the left shows methane levels up to the present, dating back about 800,000 years. The right blows up the last .00008 years of the left side of the chart, and shows methane levels from 1950 to 2013.  As can be seen, prior to the industrial revolution and for going on at least near a million years, atmospheric methane levels were never above 800 ppb.

Yet notice on the left of the graph how at the very end of the 800,000 year period, the levels a) essentially shoot straight up, and b) geologically, shoot up by a whopping total amount.

That is, during our modern industrial age – barely a pinprick of even recent geologic time – methane levels have suddenly shot up to more than double the highest average atmospheric concentration earth has seen in close to a million years. (And, if we consider past levels in comparison to today’s, levels have very likely been lower for a lot longer, although harder to directly ascertain since the most reliable source of trailing geologic atmospheric data – ice core sampling from holes drilled “backward” in time down into layers of thick glacial ice – only goes back about 800,000 years.)

That is, methane levels have not just significantly increased, but have gone up by more than an additional 800 ppb increase alone. And lately in the arctic, methane levels have spiked an additional 800 ppb or more further above that.

Methane is nowhere near as long lasting as the other major long lived greenhouse gases. And it breaks down (largely into CO2) over several years. (It takes about 12 years for a quantity of methane to be reduced to around 37% of its original amount.)

Yet it’s an intensely more powerful thermal radiation reabsorbing and reradiating greenhouse gas than carbon dioxide. So the more of the original methane that still exists as such (or that’s simply replaced by new methane) at any one time, the higher its energy capture and re radiation potential (the “trapping” of heat energy that then in turn transfers large amounts back to the earth, ice sheets, oceans, and so on and so on), will be.

In fact, over a 20 year period, the global warming potential per unit mass of methane is, again, somewhere  in the neighborhood of 85 or so times that of carbon dioxide. This means that over 20 years 1000 extra tonnes of methane added to the net amount in the atmosphere can have up to the same energy recapture effect as roughly 85,000 extra tonnes of carbon dioxide added to the net amount in the atmosphere.

It actually gets somewhat more complicated than this, as the more total greenhouse gas in the atmosphere, the more heat energy is trapped all around, including capture of already absorbed and re rediated energy that is re radiated downward (back toward earth) and then re captured and re radiated once again in all directions.

The impact of increased trapped radiation back upon earth’s systems from an increase in total greenhouse gas concentrations also have interacting effects that also impact total net long term energy retention. (For instance, a sufficient increase in trapped radiation will lessen total ice cover, grealy increasing solar absorption. This means more direct warming – heat energy retention – of the physical land, ice and in particular global ocean will occur, less sunlight will be reflected back upward as still short wavelength solar radiation (which essentially isn’t “trapped” or absorbed by greenhouse gases), and far more will ultimately be radiated in medium wavelength, as thermal radiation, and re captured by greenhouses instead.)

But this potentially non linear nature of total net greenhouse gas radiative forcing is also part of why just a few hundred ppm of CO2 and ppb of CH4, and small amounts of a few other lesser gases, are sufficient to keep earth at about 58 degrees on average world wide, instead of all but a lifeless frozen ball of ice averaging 0 degrees; but a doubling of these amounts wouldn’t jack up earth’s average temperature to 116 degrees, which would turn earth into a furnace. This is a gross oversimplification, but it helps show the complication.

(It also helps show how on the flip side, a fairly large increase in those concentrations will, among other things, ultimately likely raise the earth several degrees, depending on feedbacks and other effects, and far more relevantly presents a larger risk range of lower end effects to major if not radical climatic shifting. Although every single possible complication, and multiple invented ones, are grasped at to try and reinforce the archaic, and very much the opposite of Galileo, belief that man can’t much relevantly affect his own global environment here on earth.)

Methane also re radiates certain bands of thermal radiation wavelength, so as more and more methane is present, the increased recapture of energy already trapped by molecules, which would amplify far more quickly from major increases in methane than in the case of carbon dioxide since it’s such a far more potent energy capturing gas, as well as from the atttendant potential limitation of available energy at that wavelength, would tend to cause methane to have a somewhat lower total energy recapture impact than its total warming potential (potential per molecule to absorb and re radiate thermal radiation).

But the bigger point is that even in terms of assessing methane’s overall impact by using the far more finely honed but complex and inexact radiative forcing quotients than the simplistic story told here, higher ongoing amounts of methane in our atmosphere mean a very different and far more powerful story than the one currently told by estimates that are based on current atmospheric methane amounts and the fairly fast breakdown rate of that methane, that thus uses a far lower energy trapping quotient than is likely going to be realized in the atmosphere from total methane concentrations over time.

In other words, if we project the effect of 1800 ppm methane over 100 years, as is commonly done, and use the GWPe wherein most of that 1800 ppm is not methane for the great majority of the time period, the estimated future effect will only be a small fraction of what the real effect on total atmospheric thermal radiation recapture will in fact be if methane levels stay at 1800 (or go higher).: thus meaning for the entirety of that 100 years, it’s all methane. (The molecules being broken down thus being replaced so that the total concentration, and thus energy recapture potential and effect, stays far, far higher.)

For instance, if we use a 20 year GWP for estimating methane’s future global warming impact, the future impact will be considered far higher. Yet even over just a 20 year period a fairly high percentage of any methane originally released into the atmosphere has already broken down.

Knock the measuring period down to about 10 years, and the total heat energy re-capture (or “surface emitted thermal radiation absorption and re-radiation”), potential shoots up far far higher than 85 times the impact, gram for gram, than carbon dioxidem, even if all of it isn’t realized due to multiple capture of methane’s target wavelengths.

In short, when methane is looked at as methane – what it should be looked at in terms of assessing the impact of future atmospheric methane levels over time – the effect is far more profound than when looked at as only a short term gas projected out, based on today’s levels, and with the expectation that most of today’s methane won’t be methane for the great majority of the period:

Which, in turn, is great for assessing the impact of today’s methane levels alone. But it’s potentially the opposite for assessing the actual long term impact of total ongoing atmospheric methane levels and, though harder to project, what’s actually relevant here to gauge the impact of that methane: What methane will be over the next X years, not just what it is this moment.

And, again, as there is more carbon buried as methane in frozen but now beginning to thaw sea floor bottoms than already exists in the entire atmosphere (and many many hundreds of times more than exists as a carbon atom making up part of a molecule of methane), and likely a little over one and a half times that, give or take, on land based permafrost areas (which would emit as both carbon and methane), the issue is not just one of how much our farm raised ruminant animals chew cud, wetlands, landfills, gas leakage or fossil fuel extraction and transport, etc,; but at this point, more predominantly one of the ongoing march of increasing ocean temperatures and melting ice sheets, and the uncertain but potentially huge impact upon otherwise long frozen (i..e, sequestered) methane gas as well as additional carbon.

_______

Thus, a big increase in methane’s concentrations over time is potentially far more significant – due to the shorter shrift than carbon dioxide that methane usually gets, due to its smaller concentrations, and far shorter realistic lifespan – than might at first appear.

In other words, the average concentration of the gas over trailing time is what ultimately mattered. (Whatever net effect it was; even if most of this energy recapture effect that, along with the geogolically relevant increases in long term greenhouse gases that produce it essentially define the climate change challenge, has, so far gone into changing earth’s future climate impacting systems, and accumulating surface land, ice and ocean energy.)

But what the gas will be in the future, not what today’s gas alone will do, is what matters for the future. And thus average levels of the gas in the future will matter far more than methane effects typically projected based upon today’s levels  and methane’s high breakdown rate.

And this will be even more relevant – perhaps far more so – if there is ever a very large influx into the atmosphere over a shorter, or simply ongoing, period of time, and sufficient to have a fairly powerful short term amplifying heat recapture effect.**** [The reason for this seeming oversight is that climate change has been hard enough to illuminate to the public particularly in the face of sound bite news, and rampant information that as a matter of advocacy simply seeks to try and refute the issue, rather than – mistakes and all, in any random direction as part of the process of evaluating itself – simply try and objectively and dispassionately assess it, or just an extremely poor overall assessment of what risk ranges mean or the fact that that it’s risk ranges, not what will assuredly happen or that can somehow be exactly predicted (nearly impossible as that is) that is relevant to assessing this issue.]****

And, lo and behold — and barely touched on as we focus almost exclusively on air temperature and the enormously mistaken (if not flat out geo-physically ridiculous) “skeptic” idea that for climate change to be “real” or significant means we have to be able to (almost impossibly) predict the exact amount of short term average ambient air change in advance — there’s a fairly extensive risk of just such ongoing high, if not at some point significantly increasing, methane levels.

Given the enormous amounts of methane buried in shallow sea bed areas, as well as the enormous amounts of carbon buried in the northern hemisphere’s vast permafrost – much of which will be emitted as methane when and as our northern permafrost melts, and just as it is slowly starting to do – a large, ongoing and even crescendoing influx of methane over a fairly relevant period of geologic time, is a large possibility; while some ongoing and increasing total methane release from the impact of atmospheric change itself, rather than directly as a result of at this point controllable anthropogenic activities, is very likely.

And the large ongoing methane increase side of this equation is an even stronger possibility if, as many scientists project, there’s a short period of rapid geologic change as a result of the enormous and growing earth energy balance changes currently underway due to a massive and steady input of long lived heat energy trapping gaseous molecules into the atmosphere. Which input in turn – and in just a few hundred years, much of it just in the last 50 or so – has increased current concentrations of carbon dioxide alone to amounts likely not seen on earth in three million or more years.

And in an event of a rapid geologic climate shifting – which could happen at any time but becomes increasingly likely as our oceans continue to warm at a remarkably fast clip, and polar ice cap melt rates at both ends of the earth continue to accelerate – the rapid release of a lot of methane, with its powerful warming potential relative to carbon dioxide, would significantly amplify and extend any climate shifting process, perhaps even fundamentally re-write it.

This is something we’re not quite getting because our imaginations tend to be somewhat constrained by what we’re used to seeing, and we don’t quite integrate what a multi million year change to the long term molecular heat trapping property of the atmosphere, in a remarkably short geologic time period, really means in terms of earth’s shifting energy balance. (And as sites like this – now to nearly 300,000,000 page views, and overwhelming influence – and countless others seek to refute the very idea itself, to perpetuate an ideological, old school belief of non relevant atmospheric impact, under seeming guise of “reason”and an almost non stop onslaught of irrelevant, cherry picked, or issue misconstruing arguments and claims, all with enormous built in rhetoric.)  To us it’s still sort of “abstract.”

Massive change, well after the cause – underlying energy shifts – in what we can later see, won’t be so abstract.

Climate Change is now Proven, but There’s Much More to the Story Behind the Story

Twenty some years of attempts to come up with any rational theory that would explain why major rises in long term molecular atmospheric energy recapture wouldn’t relevantly impact climate, have led to nothing but an enormous amass of misrepresentations, and a great deal of misinformation on the “climate change” issue.

It has also led to a host of super sounding theories that ultimately come down to nothing more than the assertion and belief that “it just won’t affect climate much.”

One of the mainstay arguments has been that “climate change has not been proven.”

This is like claiming that someone trying to leap from the top of a three story barn, onto a 4 foot deep bed of hay with 12 pitchforks pointed upward and hidden just below the top layer of straw, doesn’t present a major risk of injury because what will happen – or even that the move is dangerous – “can’t be proven.” But the exact effect we are having on the earth’s energy systems, and ultimately its climate, can’t be proven.

That is, our actions and their effects cover an exceedingly long time period; climate is inherently variable, and means a pattern of regional or global weather over very long periods of time – several decades; on top of the uncertainty of being able to determine what the present climate is, or, further complicating the picture, if it is changing without passing through exceeding large periods of time, there is also almost assuredly a significant lag between our actions and most of their effects; there is only one earth – one variable to measure over super long periods of time; and, most critically there are absolutely no controls (ways to replicate or remove added changes on otherwise identical systems, or planet earths).

Therefore we can have no way of knowing what the earth would be doing at any one moment, or what it would be doing climatically over long periods, in the absence of the powerful atmospheric changes we have wrought and that at a breathtakingly rapid geologic rat,  we are continuing to add to.

So if a person doesn’t want to “believe” that our alteration of the long term chemical composition of the atmosphere is already impacting our climate, is likely to do so much more in the future, and presents a significant risk of major, and more rapid, climate “shifting,” that person can simply fall back on the idea that “it can’t be proven.”

This of course misconstrues issue: The greenhouse effect is proven science, and has been known for more than a century. The massive amount of increase to greenhouse gases is also somewhat incontrovertible. That these gases “trap” thermal radiation, and can’t be turned off, and that the recaptured energy (absorbed and re radiated in all directions, instead of being un-absorbed and continuing unabated upward through the atmosphere) has to go somewhere – do something – is also incontrovertibly known. And that climate is ultimately an expression of energy, and that by significantly increasing the long term molecular re-capture of energy, we are changing, increasing, earth’s net energy balance.

We would also expect to see signs of change in not just atmospheric temperatures – but as difficult as that is to prove with certainty, as distinguished from inherent, although at this point it would be statistically bizarre – randomness and “natural” (otherwise occurring) changes – changes in earth’s more basic systems as well – and specifically, the one’s that help shape and determine our longer term climate. And we have, in a fairly major, and increasing way.

In the absence of any evidence, or any knowledge, it wouldn’t make a lot of sense if an increase in long term atmospheric greenhouse gases – to levels not seen on earth in millions of years – didn’t significantly impact our climate; even if, given the inherent complex nature of climate and again, natural variability itself, if not in entirely predictable time paths and precise amounts.

Still, enough time has gone by, and more than enough change has been made to the atmosphere, that if we didn’t see what at least appeared to be some early “signs” of impact, we might wonder “hmmm, that’s odd, it would seem by this point we would see something that at least suggests some change.”

So although it does not “prove” or “disprove” climate change, lack of any corroborating sign as a practical matter would open up a lot of doubt, or wondering.

So naturally the pattern of climate change “skepticism” has sought to refute all signs of such corroboration, or present them as simple “bizarre” coincidences of a natural changing world.

Never mind the oddity that this would represent – earth changes “naturally and easily” but yet our own huge atmospheric shift that represents an enormous influx of recaptured atmospheric energy somehow would not impact it – weird enough on its own – yet at the same time that it’s not impacting it, and by even more remarkably bizarre coincidence, we would still be seeing fairly unusual indicias of change right along the lines of what we would expect to see from the change that we have made – ones that on their own would be extraordinarily statistically unlikely to have happened by sheer chance. (Let alone in combination with the fact that if they were to happen by chance it would also simultaneously mean our huge atmospheric energy shift was somehow, again at the very same time, and also bizarrely coincidentally, not relevantly impacting climate.)

It’s a bit preposterous. But nevertheless, that is in essence what skepticism is. (I suppose if the above paragraph could be expressed both as clearly and as accurately but a little more simply, I would both be a better writer, and climate change skepticism would be a little easier to point out in ways that might prompt even skeptics to marvel for a moment, before catching themselves, at the illogic of their own arguments, and there would be less of it. But the issue is complex, which is why it’s been fairly easy to promulgate skepticism, on what is otherwise, complex or not, a pretty lopsided set of circumstances.)

But rather than see the oddity of our huge atmospheric change not impacting climate, and not doing so, along side the very unusual indicia of exactly the type of (and statistically  unlikely) change as we would expect,  as somewhat preposterous, climate change “skeptics” would instead see the argument just offered as itself preposterous, illogical, or some such, and by the same mechanisms that – along with the massive amounts of misinformation that propels it – filter things to fit into and reinforce suck “skepticism,” rather than in fact be even the tiniest bit skeptical about it.  (Climate change skepticism is remarkably non skeptical of most arguments and most individuals that seek to refute or disavow climate change.)

The basic human tendencies that make this so easy to do, which are greatly amplified when an issue is either political or is seen to have political ramifications and great interest or passion, is perfectly, if implicitly, explained in the second half of this reasonably short – and excellent – piece, by Craig Silverman.

“Proving” climate change seems somewhat akin to “proving” that if someone jumps off a 30 story building atop a city street with no safety net or other protection, they will die. We know it will be the case (or to analogize it to climate change, make it 7 stories, and thus “very likely to be the case”) but in one sense it really can’t be proven. Only deduced from what we do know.

In other words – although “proof” is a good tool to use in rhetoric if one wants to fall back on belief and desire and self convince of the exact opposite – it’s essentially irrelevant to what the issue really is, and the risk ranges that it presents and thus the issue of our best strategic response to it.

But again, in many respects the climate change issue is complex or can be construed as complex; there is a lot of misinformation and misunderstanding swirling around it; our media coverage, along with the perceptions of the majority of the population, are invariably affected in their understanding of the issue (and trust in climate scientist representation) by such misinformation, as well as its complexity; it is often communicated poorly and in a way that doesn’t really show people what the problem is rather than tell them that there is a problem, or show them the changes that are taking place as “proof” of the problem, when that still doesn’t really show or illuminate what the problem is; and it is sometimes a hard issue to both conceptualize along the many levels of risk range and probabilities that it does represent, while also boiling it down to its correct essence and what that represents, as opposed to what is often done instead:

First, the issue being only an “effect” rather than presenting a risk range of ultimate effects and impacts. And second, that the issue is one of rising ambient air temperatures, rather than the more fundamental and important changes that are taking place to the major earth systems that in fact help shape, and drive, future climate, and that are in fact starting, and in accelerating fashion, to reshape our earth’s surface in still somewhat abstract seeming, but rather significant ways.

So, for practical reasons, and in terms of helping to provide a better understanding of the basic reality of the issue – increase long term atmospheric greenhouse gases, it captures more energy and thus affects things, and we’ve increased long term atmospheric greenhouse ways in a way that is somewhat geologically radical, and have done so in an extremely short period of time – finding some sort of “proof” may be helpful on the issue.

Fine some sort of “proof” also provides a reasonable out for the less extreme climate change “skeptics,” as well as so called  “lukewarmers.” (Kind of bogus and misleading term used for those who still badly misconstrue the climate change issue but know at least enough of the basics about it to recognize that the very notion that a multi million year shift in our atmosphere’s long term energy recapture wouldn’t affect climate is inane, or who may not be so inherently resistant to science reality when it goes against what they would like to believe but who have heard and been convinced by a great deal of misinformation on the topic that’s passed off as news and information, and who thus – widespread as this is – greatly misconstrue what the issue is, and what the actual known and relevant facts are.)

Not only is there nothing wrong with the concept of a reasonable “out” to help facilitate the advancement of views, it’s consistent with human nature.

Unfortunately, along with often dismissing or trivializing the real fears of both skeptics and many others who have conflicting feelings or understandings on the issue, rather than openly and honestly recognizing and addressing them, offering them an out, or even better, an “olive branch,” is something that many climate change advocates and leaders don’t seek to provide. And both of these tendencies are big errors in basic climate change communication and understanding advancement: something which itself has a long way to go before our overall societal assessment of the issue (and not the insular assessment of those in the know and who wrongly conflate that assessment with society’s in general) is anywhere close to reality on the issue.

I am sure many hard core climate change skeptics will seek mightily to “refute” any proof, and are probably working steadfastly right now on doing so; and am not sure that what has just been observed and measured actually does serve as “proof” (though again the very concept of “proof” is badly misplaced when it comes to assessing what this issue actually is, and understanding why, would do far more for understanding on the actual issue); but scientists have, for the first time, now directly measured the  precise impact of the greenhouse affect and energy of, in this case temperature increases attributable directly to a rise in greenhouse gases.

In short, climate change, in some sense, has now been “proven.”

Flawed or not, it seems a fairly significant advancement, if not in our understanding of the issue, certainly in our assessment of it as – if not still complex, globally changing, long time frame and by definition imprecisely predictable – an absolute and definitive, rather than “very likely or we certainly think” phenomenon.  (It essentially was before for basic conceptual reasons, more complex than but essentially similar to the case of jumping off a very tall building onto a bustling city street; but it couldn’t be measured as such, so was considered otherwise.)

And those who have been moved, even if falsely, in their belief about the issue by the so called absence of proof, can now, comfortably consistent with their own prior thought processes, become more realistic about the issue; and now contribute to the process of how best to solve this challenge, rather than instead constantly seek to refute and disavow it, as so much energy has previously, wastefully and counter productively gone into before.

Sky Rocketing Arctic Methane Levels Help Tell Part of the Much Bigger Story of Major Change

(Last updated March 6, 2016)

Lately, methane levels in the arctic have been spiking to unheard of high levels. What does this mean?

_______

We can tell from extensive ice core sampling that for at least the last 800,000 years, average ambient methane – or CH4 – levels apparently never rose above around 800 ppb (parts per billion), in the earth’s global atmosphere.

Yet in the modern industrial age – a pinprick of geologic time – average levels of this potent greenhouse gas have suddenly risen by an amount that’s more than double the highest concentrations recorded in at least 800,000 – i.e, not far from a million – years, and possibly longer.

And in the Arctic, where concentrations of late have been particularly high, last fall and again this past spring, methane levels have at times spiked an additional 800 ppb or more above that.

Update: Lately methane has been spiking even higher still, and Winter 2016 saw the previous highs not just beaten, but shattered, as NOAA’s METOP orbiting polar satellites in late February recorded a spike to a whopping 3096 parts per billion:

metop-methane

_______

Through a multitude of processes – enteric fermentation in ruminants (cows, camels, goats), landfills, energy production, etc., methane levels – from a geological perspective – have skyrocketed.

Pay close attention to the left side of the EPA chart below, and note how from a geologic perspective methane levels (as with CO2), have shot straight up – suddenly going frrom around 700 -750 ppb, to over 1800.

Given methane’s fairly rapid rate of breakdown, it leveled off near 1800 ppb in the atmosphere in the very early 2000s. (To keep levels high, let alone continue to increase it, requires a lot of ongoing net emissions, since methane’s half life is only around 6 to 9 years.) But since 2007, levels have been slightly increasing, and are currently a little over 1800 ppb. (As of Winter 2016, average ambient atmospheric methane levels are around 1830 ppb – which given methane’s fairly rapid breakdown, means large – even increasing total amounts – are still being emitted. And in the arctic and surrounding northern polar latitudes, it appears the surface of the earth’s methane potential is just starting to be scratched – see below .)

Methane – It’s History, and What’s Happened Now

About 2000 years ago – or 1/400th of an 800,000 year period – levels of this potent greenhouse gas were a little bit above 600 ppb, and, in part through human activity ( rice cultivation -which is a form of wetlands, which are otherwise large natural emitters of methane -increasing domestication of ruminant animals, etc.) that rate “crept up” to around 700 ppb around the year 1600. (Which is also roughly around the height of Western European deforestation, when all but an estimated 5-15% of Western Europe forests had been cleared.)

Total atmospheric methane then tailed off slightly, then started to creep up a little faster to right around the start of the industrial revolution, where it was nearing 800, which is slightly above its highest point for more than the last three quarter million years. (Graph by EPA):

GHGConc2000-large

Then, particularly as we moved into the 20th century, from a geologic perspective levels of this gas essentially started to shoot straight up, comprising a rise from around 700 – 800 ppb around the years 1800 – 1850 – and just about the highest methane had also ever been over the past 800,000 years – to a concentration a little over 1800 ppb today. With again, similar to the rapid rise in CO2 over what is also a mere geologic moment – the far more significant part of that rise occurring over an even shorter time period. .

In other words, until recently, as far as we can tell from ice core sampling, the earth over the past 800,000 years had not seen an ambient atmospheric methane concentration level above the high 700s.

Yet today ambient global methane levels stand at a little over 1800 ppb. And in the arctic this past October, methane levels shot up to an amount more than 800 ppb over that, as atmospheric concentrations of methane over the arctic region reached 2666 ppb.

Again, this also occurred this past spring (when they actually went up to 2845, almost 200 ppb higher than in the fall), and, although a little lower, in early fall of 2013 a well, when methane levels spiked to over 2500 ppb in the arctic.

Why is Methane Seemingly Starting to Move Upward Again, Particularly in the Arctic Region

Additional arctic methane spiking happens when northern permafrost areas start to slowly melt. While seemingly minor right now, the issue isn’t so minor, as permafrost covers about 24% of the northern hemisphere’s total land mass, and it’s slowly starting to change. (In fact, in one of the many indices of “hidden” changes beyond what we simply feel when we open a window, in many shallow frozen and partially frozen northern permafrost areas, the actual ground just below the permafrost has warmed more, sometimes considerably more, than the ambient air just above the surface of the frozen area. Which is kind of remarkable when you think about it, and bodes a lot more long term change than mere, “ephemeral” and always changing air temperatures.)

And, more fitting for a movie than a science piece, it also happens when shallow sea bed areas – essentially frozen solid for hundreds of thousands of years if not more – warm up and thaw sufficiently to release methane that’s otherwise tightly bound up in copious amounts in frozen clathrates along much of the upper ocean shelf sea bed floor, leading to the eruption of methane gas.

When methane bubbles up, it’s sexier, or eerier, than the simple emission of carbon dioxide into the air: It erupts out of the sea bed bottom and, lacking buoyancy, if enough of it displaces water on its way up, can literally cause a ship to sink straight down in what would appear to the outside world as an unsolved mystery.

This is interesting in small amounts (though not for any ship that happens to be in the wrong place at the wrong time).

But it’s also something that in large amounts will have a fantastic impact upon our world, due to the powerful heat energy absorbing properties of methane in comparison with the far weaker carbon dioxide molecule and – along the massive amount of carbon “stored” in the northern land permafrost – the huge quantities of methane on our sea bed floors that after long epochs of geologic time, and not at all “coincidentally,” are now suddenly starting to thaw.

How is this thawing happening?

While there is great variability from year to year, each year, on average, less and less arctic sea ice – which in the past has dwindled during late summers somewhat but for the most part essentially remained year round – exists by late summer in the northern polar arctic region.

In fact, over the past several decades, summer arctic sea ice extent has been decreasing by a little over 13% per decade.

This change is critical. Darker ocean water absorbs a much broader spectrum of incoming solar radiation – for the same reason that when you wear a dark shirt in the sunlight, you are warmer than when you wear a white shirt.

Reflected solar radiation doesn’t have nearly the same effect as absorbed solar radiation.

Solar radiation is mainly short wave radiation, and atmospheric greenhouse gases predominantly absorb and re-rediate medium to long wave length radiation. But when solar radiation is instead absorbed, that heat energy isn’t reflected back into the atmosphere (where in turn it is largely unmolested by the greenhouse gas molecules that otherwise keep our planet warm), but is transferred into the absorbing body. Yours and your clothes if you are wearing dark clothes, for instance. Or a dark macadam surface. Etc.

Additionally, when some of that heat is given off by the absorbing body or earth surface or water surface area, it is emitted as thermal radiation, not solar radiation.

Although warm matter can also convey heat via conduction, the passing of heat via molecules to cooler, neighboring molecules – though here directly to molecules of gas, not solids as is the normal definition of conduction – as well as by convection, which is the passing of molecular heat from or to a gas or liquid, and, via conduction to gases such as air, which then frequently results in air currents that then transfer that that heat outward – as for example you may feel when sitting near a fireplace.

Thermal radiation, on the other hand, is in the medium to long wave radiation form: This is the radiation wavelength range absorbed and re radiated by greenhouse gases. While again, the short wave solar radiation that is incoming from the sun, and then to some extent reflected back out by various surfaces, is essentially not absorbed and re radiated.

The measure of a surface’s reflectivity is its albedo. The albedo of open ocean water is low, and in high latitudes it’s as as low as 10%: Meaning that almost all of the incoming solar radiation is absorbed.

Contrast that with a nice solid layer of light colored and highly reflective sea ice sitting atop the arctic waters instead – where most of the incoming solar radiation is reflected.

Snow and sea ice have a very high albedo. This is in part why large northern, southern, and until recently mainly high mountainous but much smaller ice sheets, tend to perpetuate local climate conditions, and remain relatively stable.

Although even that is now changing with respect to the very large thick ice sheets that sit atop the land at both our northern and southern polar regions: Mainly Greenland in the north (the actual area surrounding the north pole itself is all ocean water), and Antarctica – a continent that actually sits atop the pole – in the south.

Both regions are experiencing a net loss of total glacial ice; and, far more tellingly, both are experiencing it an accelerating rate, with even East Antarctica – which until very recently was thought to be extremely stable – despite ongoing atmosphere and ocean changes – getting in on the act.

This increasing rate of acceleration is not just relevant in the Antarctic, where as noted above a part of the ice sheet is now considered on a pathway of unstoppable loss, but particularly in the smaller – and thus less stable – and not quite as “polar” Greenland area. (The north pole region is open water, which used to be mainly frozen year round, but while there is wild variation from year to year, long term that is changing, and also at a fairly rapid geological clip, and leaving more and move summer water open to absorb instead of reflect the summertime solar radiation, while the south pole region is covered by the frozen but now starting to in part thaw continent of Antarctica.)

Greenland likely melted less than a million years ago, and, with far more changes in energy input into our system than occurred less than a million years ago, is increasingly likely to again.

This is an area that contains enough ice to raise the world ocean not by the few feet that the IPCC – tending to leave out many considerations on which there is still a wide range of uncertainty – usually tosses out; but by over 20 feet. Greenland, like West Antarctica, is also starting to see ice sheet melt at an accelerating rate: So much so that rivers are now forming along its surface to speed away melting snow and ice, while also hastening and accelerating the melting process, since water itself – and moving water even more so – is a melting accelerant.

And while we conjecture, we really don’t know just how fast melt acceleration can or will occur with a globe that is accumulating net long term heat energy – and one that for very specific and still even rapidly increasing reasons – doing so at a geologically breakneck, and increasing, pace.

For instance, as the World Meteorological Organization pointed out in its last Statement on the Status of the Global Climate (emphasis added):

93 per cent of the excess heat trapped in the Earth system between 1971 and 2010 was taken up by the ocean. From around 1980 to 2000, the ocean gained about 50 zettajoules [10 to the 21st power] of heat. Between 2000 and 2013, it added about three times that amount.

In other words, in the thirteen years between 2000 and 2013, our ocean gained more than 3 times the energy that it did in the 20 years from 1980 to 2000.

There’s presently a sort of fiction in even some climate change concerned circles that this is “absorbed heat” that mitigates the effect of “climate change.” We’ll get into that in another post (as well as below when looking at methane clathrate eruptions):

But essentially the heat retained by the ocean is simply a reflection of excess atmospheric heat energy over the earth’s surface (mainly ocean, as water can absorb a great deal of heat, and do so more easily than land surfaces, which stay fairly insulated very close to the surface). This in turn becomes part of our climate system over time, and reflects a key part of what drives and directly affects what drives our climate.

For instance, extra heat is not “hidden” in oceans, it affects those oceans and how the oceans ultimately affect the world, through a multitude of processes.One of which is warming sea columns in shallower ocean areas, warming up long frozen sea bed floors containing large amount of previously well contained or “trapped” methane.

The insulating Process 

The earth’s climate is driven by the stabilizing and moderating forces of it’s geo-physiology – its oceans ice caps and, secondarily, attendant global patterns of tendencies. (Such as ocean currents, etc. Also note that not only do the polar ice caps play a key role in moderating and generally stabilizing earth’s temperatures, but even relatively minor changes in them can have a very large impact upon climatic conditions.)

And it’s driven more directly and immediately, of course, by the source of almost all energy: The sun, and then the amount of solar radiation, transformed after absorption into thermal radiation upon release from any surface area of a warmed body, that is then re-absorbed and re-radiated by the total greenhouse gases in our lower atmosphere, at which is incoming, both originally, and then again prevented from rom esIncoming energy, in the meantime, is a combination of the sun, which of course is what it is; and less directly, the level of atmospheric greenhouse gases, which absorb and re radiate heat.

These infamous greenhouse gases (though the term is sometimes sloppily used synonymously with carbon dioxide) are already at massively high levels for our current epoch – already higher in the case of CO2 alone  than in the past few million years. (That measurement also doesn’t even take into account large increases in methane, nitrous oxides, and fluorocarbons which when added in terms of each’s “global warming potential equivalent” or thermal radiation absorption and re-radiation properties relative to a unit of carbon dioxide, add considerably more to the total long term molecular atmospheric increase in re captured energy.)

And, through activities that we could curtail, alter, or transform (mainly multiple traditional agricultural and energy practices), these levels are still skyrocketing. That is, from a geologic perspective, as noted at the outset, they are essentially shooting straight up.

These greenhouses gases also include water vapor, the most important greenhouse gas at any one time, and one which we’re not affecting directly. But water vapor is not long lived, but ephemeral. Thus it’s not a driver of long term climate, but a response to it, and a part of weather itself.  With a warming world, the atmosphere will likely lead to the evaporation of, and retain, more moisture.

Since it can hold more moisture, this might mean increased precipitation intensities and changing patterns, one of the most likely long term responses to our ongoing change – although exactly how precipitation patterns will change is unclear. (What is clear is that our current fauna and flora as well as river systems, and current anthropogenic agricultural areas and systems, evolved under the general global and regional patterns of the past few million and in particular past few hundred thousand years.)

If it means more precipitation overall, much of this could come in less frequent but much more intense precipitation events. Though more precipitation overall would be far more welcome than less overall in an otherwise still warming world, it would also likely mean an amplification of the ongoing “greenhouse” affect, since it would mean an increase in average total atmospheric water vapor levels.

While water vapor acts as an atmospheric reflective agent during the day – increasing earth’s overall albedo by reflecting a lot of sunlight right back up before it even penetrates through the atmosphere down to the ground, it also acts as a powerful greenhouse gas simply due to the massive concentrations relative to the other greenhouse gases, “trapping” in thermally radiated heat.

Both of these phenomenon – increased heat retention through energy re absorption and re-radiation (“re-capture”) , as well as increased solar radiation reflectivity – are at play during the day. At night, only the powerful greenhouse effect of increased water vapor is at play, leading to an overall further amplifying effect if water vapor levels are generally increased.

On the other hand – although so far the evidence doesn’t seem to support this being the case, but almost anything could change in terms of precipitation patterns as we move forward – if water vapor decreases despite a higher overall rate of evaporation due to warmer temperatures, this would heavily exacerbate what is likely to be one of the most fundamental problems caused by our change set of climatic conditions as it is: Drought.

Remember, even with increased precipitation, with more water vapor being held in the atmosphere, as well as shifting regional patterns, regions used to receiving rainfall could easily experience huge shifts and become regions that receive almost no rainfall at all (and vice versa) whereas many areas could receive the same or even more rainfall, but with precipitation events both far more intense, yet less frequent, etc, with thus far more of that precipitation lost to runoff under our current evolved world, including its rivers, topsoils, and root structures – as well as intensified flooding.

Drought and changing precipitation patterns, particularly for the poorer areas of the globe, is likely to be one of the most directly devastating affects of ongoing climate “change,” and while a lessening of some of the greenhouse effect from reduced water vapor would be welcome in that sense, a decrease in overall precipitation along with changed patterns, likely increases precipitation fall intensities, and overall warming would be a particularly negative, possibly – at least in terms of what we are used to (and have come to rely upon) right now – mind blowingly devastating development.

So while water vapor is a bit of wild card, it’s not really a good wild card in either direction. And there is a fundamental reason for this. We evolved, and the species we relied upon evolved, under the conditions of the past few million years. And those conditions are changing.

A Look At the Bigger Picture

While both polar glacial ice regions are decreasing in total ice mass, and far more notably, at an accelerating rate, the smaller, “less” stable Greenland ice sheets in particular are starting to show increasing signs of marked change. And in just the last five years – a remarkably short period of time – the extent of net melt loss from both polar regions together has doubled. In the apt words of Angelika Humbert from Germany’s Alfred Wegener Institute, this is an “incredible” amount.

(Do a little math. While there is no reason to expect this (or, for that matter, not expect it), if that pattern were to continue – i.e. regardless of size just keep doubling the loss every five years – it wouldn’t be long before a good portion of Florida, and many other areas, would be completely underwater. In the U.S. for example, you might want to start investing in Arizona “beachfront” property, now.)

Greenland is also more conducive to easy climatic change than the vastly larger and colder antarctic region, as again even some 400,000 to 800,00 years ago, for a time it was not a large sheet of ice, but instead covered by fauna and flora; and the world’s oceans, correspondingly, were much higher.

Whatever happened less than a million years ago, also keep in mind that the level of energy alteration we are currently undergoing is already on a multi million year level scale, and it is also one that, simultaneously, is still increasing. Fast. And from a geologic perspective, extraordinarily fast.

This rate of change is something we tend to confuse with our own sense of time; thinking that effects upon this enormous, structured system would be near instantaneous, when they will shift and accelerate, even lurch, over longer and largely unpredictable periods of time, as the net energy balance of the earth lower atmosphere continues to grow, and as these underlying and normally stable structural ecological systems – such as our ocean, ice sheets, and others – start to change over time at an accelerating rate.

And they will do so in most cases, with some sort of positive feedback. Such as, for instance, in the case of warming shallow ocean region water columns, which are showing very early signs, again, of releasing long frozen solid methane clathrate deposits up into the surrounding ocean waters, where they bubble up, and release out into the air. Where, in turn, they add to the process of increasing net energy retention (prompting yet more melting, etc), even further.

(You might think it’s “odd” that things happen to be reinforcing, but this is because the two most critical elements in all of this often get completely overlooked. 1) This entire phenomenon represents what is in effect an external, or “forced” change in energy input – from something outside the natural system – namely, in this case our alteration of it. 2) It is geologically massive.)

In the arctic region where these methane spikes are seemingly becoming more prominent, the summer sea ice extent continues to decline, and there is a massive change in the surface albedo of these summer waters – that is, as the surface changes from the high reflectivity of an extensive ice coverage area, to the extremely low reflectivity of dark colored, high latitude open ocean.

And remember, this matters, since the ice depletion, of course, is occurring in summer when the north pole is angled toward the sun and receives its rays.

While at the same time, the 1% a year or so increase in southern polar sea ice extent, that is probably due largely to an increase in the Southern Annular Mode wind patterns pushing more of the ice northward and making room for growth, as well as concomitant near freezing upper surface water insulation from melting glacial run off is during the southern hemisphere winter months.

So with increasingly less arctic sea ice, the arctic ocean sometimes gets a lot warmer. And this in turn leads to some interesting things that sound like they are on the cutting edge of science fiction, but that are very real.

Namely, this eruption, or thawing, of methane clathrates that exist in large quantities amounts on sea bed floor areas, and that contain a massive amount of this long “contained” methane gas. (It is not that clathrates never released before. It is that the process has likely moved from a relative rarity in terms of occurrence and amount – and thus insignificant – to one that is increasingly significant, just as would be expected if shallow ocean bed areas – which generally tend to be very stable in temperature but are not that far below freezing temperature – were to warm.)

Current estimates of the amount of methane so “trapped,” most of it in shallower areas more susceptible to thawing, have come down; as it has been discovered that the far deeper ocean floor areas contain very little of it. (These far deeper areas are also far less susceptible to thawing anyway, and in fact some studies have suggested that some of the deeper ocean waters have not warmed at all, while other deep ocean parts have, but these areas are hard to gauge, since they’re not easily accessible.)

Yet the estimates still average out to more than the total amount of carbon (about 750-800 gigatonnes, or a little under 3000 gigatonnes of actual carbon dioxide) in our global entire atmosphere.

That’s a lot. But even more relevantly, methane gas is a much more potent absorbent of thermal radiation than carbon dioxide. This causes a lot of confusion and assumptions, since methane breaks down into carbon dioxide, with a half life typically of somewhere around 7 or 8 years.

This means that the longer the time frame, the lower the overall potency of methane in terms of its Global Warming Potential equivalent. (Or “GWPe” – simply a measure of the warming capacity of a particular gas, relative to the baseline warming potential of the most common greenhouse gas, carbon dioxide; which itself is very prevalent in the atmosphere but has a fairly weak warming affect per molecule, expressed as a GWP of “1.”)

Typically, methane is expressed in terms of a GWP over a term of 100 years, over which it has a value of about 23 or so.

That is, each unit of mass of methane, first as methane and then as breakdown products, including carbon dioxide, will have about 23 times the effect, in terms of total thermal radiation absorption and re radiation, as each unit of mass of carbon dioxide, over a 100 year period.

Over a shorter time period, which means that for a higher percentage of the total time any particular molecule of methane still exists as methane – where it’s vastly more effective at “trapping” heat than carbon dioxide – the GWP again is far higher.

But it’s not, as some articles may inadvertently lead you to believe, that methane is “23 times more effective at trapping heat.” (It actually a few hundred times more effective, but again, it doesn’t last very long).

It’s that over X period of time, a unit of methane will average out to have an effect that is about Y times as effective at trapping and re radiating thermal radiation energy, as the same unit mass of carbon dioxide.

But, just for example, over a century period a release of 10 gigatonnes of methane gas (a very large amount), would essentially have a similar effect, averaged out, of about or up to 230 or so gigatonnes of carbon dioxide over about a hundred years, and thereafter have around the same ongoing effect as carbon dioxide, since that is essentially what most of it will ultimately be. (A tonne is a metric ton, or about 2200 pounds. A gigatonne is one billion tonnes, or about 2,200,000,000,000 pounds.)

Notice also, though there’s little in the way of information that would tend to support or refute such an idea at his point, that if very large scale sea bottom warming were to occur over a short period of time, and thus massive amounts of methane released, the higher warming intensity of methane over a shorter term time scale would become more relevant – particularly if it was released in significant enough quantities to have a shorter term accelerating impact upon other climate driving conditions.

This same possibility also exists with respect to the vast northern permafrost; which when it melts will release some of its vast trapped carbon in the form of methane, and not just carbon dioxide, as well.

Enormous releases over, say, a 10 to 20 year period (or high enough sustained releases to keep the overall level much higher over a longer period) would make the relevance of methane’s higher GWP over that shorter period much more relevant, since the combined short term affect (or longer if suddenly much higher levels maintain through high sustained release), could quickly accelerate air temperature warming, and then further amplify ice melting rates. Over a 20 year period for instance, methane again has a much higher global warming potential equivalent (about 72 to 90.) than the 23 or so typically used for the gas, and based on a 100 year projection.

Thus an explosion into the air over say 20 years, of just a gigatonne of methane, would have up to the same short term affect of around 70 or more gigatonnes of carbon dioxide. 10 gigatonnes would have up to the effect of over 700 gigatonnes of carbon dioxide – near the total amount already in our atmosphere.

It’s not quite that simple, since the atmosphere is a balance, and some excess gas will be absorbed into the carbon cycle. But as methane and not carbon dioxide, and over a shorter time frame, this is less relevant – and huge influxes in particular in a short time also allow for less time and room for quick integration  into the total global system, even as some of the methane starts to break down after several years; so a big spike in methane releases would have an extremely powerful and fairly rapid amplifying energy effect, on top of the level of permafrost melt or sea bottom floor melting that led to the release to begin with.

And it would be pretty wild, which we still don’t seem to be fully grasping.

_______

Remember, aside from what are in the short term uncontrollable geologic emissions created by an increasingly altering climate, if we take steps to reduce methane emissions, we can reduce atmospheric levels of it pretty quickly, since it lasts as methane for only a short period of time.

And, barring an acceleration in “natural” (ir climate change induced) net methane releases, because of its fairly short half life it takes a continuation of very high emission levels just to maintain current high levels.

But levels of the gas aren’t going down.

And in the earlier 2000s, methane levels, albeit very high, seemed to stabilize and even slightly decrease, and since – despite if anything a likely cessation in total net emission increases, or possibly a small decrease – have been slightly increasing.

Once again, take a look at the EPA graph from above.  And the more geological time oriented chart on the left:

Now in the context of some of this additional information, notice again and almost identical in general pattern to an 800,000 year graph of atmospheric CO2 – that until recently – just about the start of the industrial revolution or thereabouts –  atmospheric methane levels stayed relatively stable over long periods of time, varying between 450 to 700 ppb for most of the time covering almost the last one million years. And never rising above about 780 ppb. (And then essentially, from a geological perspective, as with carbon dioxide, they have shot straight up.)

With current methane levels at a little over 1800 ppb, a spike in a portion of the arctic atmosphere to over 2600 ppb (and now over 2800 ppb) is significant.

But it is what is happening more directly in the arctic system itself that is even more significant, and also fairly interesting. And, as with almost all aspects of the phenomenon known as climate change, here is where again the issue of a warming globe – not just a warming atmosphere, but far more relevantly, a warming globe – becomes very relevant. As does the issue of an ongoing yearly average decrease in arctic sea ice extent; which, on average, is leaving less and less ice in the late summer and early autumn months to cover up the otherwise dark, solar radiation absorbing arctic ocean relevant.

Robert Scribbler explains:

Imagine, for a moment, the darkened and newly liberated ocean surface waters of the Kara, Laptev, and East Siberian Seas of the early 21st Century Anthropocene Summer.

Where white, reflective ice existed before, now only dark blue heat-absorbing ocean water remains. During summer time, these newly ice-free waters absorb a far greater portion of the sun’s energy as it contacts the ocean surface. This higher heat absorption rate is enough to push local sea surface temperature anomalies into the range of 4-7 C above average…

Some of the excess heat penetrates deep into the water column — telegraphing abnormal warmth to as far as 50 meters below the surface. The extra heat is enough to contact near-shore and shallow water deposits of frozen methane on the sea-bed. These deposits — weakened during the long warmth of the Holocene — are now delivered a dose of heat they haven’t experienced in hundreds of thousands or perhaps millions of years. Some of these deposits weaken, releasing a portion of their methane stores into the surrounding oceans which, in turn, disgorges a fraction of this load into the atmosphere.

This, along with the melting ice both on land and on sea, in polar regions and in permafrost regions (which themselves hold nearly twice as much carbon as is currently found in the entire atmosphere – some of which, again, will also emit as methane as the permafrost melts) and the increasingly warming ocean – also again, at a startlingly fast rate – is one of the many important aspects of this complex, non linear, dynamic, and system shifting process of climate change that are largely being overlooked in the popular discussion and media, as the issue gets oversimplified by a near obsessive, and very misleading, focus on air temperatures.

Although we focus on air temperatures for a practical reason – we can relate directly to air temperatures, and we even, literally “feel” it – this only tells a small part, and often a very misleading part, of the relevant story.

The bigger story is one of great change, and it is being told not just in the atmospheric record that reflects our atmosphere’s now multi million year long term molecular heat energy re absorption property, but increasing, in the tell tale signs of a changing, if not slowly rumbling and even now occasionally erupting, earth.

Update:  More information on methane, and why it’s future impact may be greatly underestimated, is found here.

What Is Climate Change Anyway, and Why Is it Being Underestimated

(Last updated 8-15-15)

What is climate change?

This often misunderstood phrase refers not just to the idea of our climate “changing,” but more importantly to the phenomenon driving it, and the real problem itself: Namely, the fact that we’ve now altered the long term heat energy trapping property of our atmosphere to a degree not seen on earth in probably three million or more years (and likely a lot more, particularly when N2O, CH4, and CFCs are added to the mix); along with the fact that we continue to alter our atmosphere at geologically breakneck speed – remarkably adding to and compounding the challenge we already face.

The ultimate problem presented by climate change is also a matter of the ranges of risk of increasing radical future climatic shifting, in response to the ongoing, and cumulative effect of an already changed atmosphere and its accumulating impact upon the heat energy balance of the earth – and risk management. (A classic and insufficiently covered example of just such potentially compounding, and even strong feedback threshold approaching, effect, is here.)

These risks, along with the likely ranges of change, become increasingly amplified as we make more profound systemic changes to our earth/atmosphere system.

And effectively managing and assessing them means to not just focus on what will assuredly happen – as most of the focus has been disproportionately placed – but also on the ranges (plural) of possibilities, times their likely chances, in order to get a better feel for the threat, and make better overall strategic decisions in response.

We’re essentially not doing this. For example, while there’s likely to be some significant change anyway, if we don’t change there will almost assuredly be what we consider “radical” climatic shifts. (See below as to why this is likely.) And at the very least there will be a much higher risk range – both in terms of the level of effects, and the increase in probabilities of more dramatic ones.

And since our atmosphere is a balance, mitigating emissions can not only retard net long term atmospheric concentration growth, it can also help to reduce total concentrations to levels more in balance with at least the last few million years or less, and thus lower ongoing atmospheric thermal reabsorption cacpacity from what it is presently, to at least soften or flatten the overall cumulative effect as we go forward, and lower amplifying feedbacks. (Such as, again, this one, which may make controlling a greatly underestimated greenhouse gas, almost impossible.)

Ultimately, radical shifting, at least in terms of measurable costs, might amount to a few hundred trillion dollars. Or perhaps it might be a little less. (A few hundred trillion dollars may seem like a bit of a gargantuan number, and in part is just used here for an example. But also hold off evaluation of that number itself until you finish this piece.)

If the chances of severe shifting –  again just by way of example – are 60%, then, simplified, the “cost” is .6(200 trillion dollars) + .4(average of other “we get lucky” outcome costs – say 40 trillion)….or around 135-140 trillion.

Again, by today’s standards, that’s a huge number, but we don’t really know. Just for starters, and representing only a releative micro fraction of the problem, turning major parts of, say, FL, LA, NJ, RI & DE in the U.S. alone into sea bed, would be extraordinarily, almost unfathomably, “costly.” And it’s an almost assured (but again, small) part of the ultimate result of this ongoing accumulation of increased net energy, barring sensible remedial action. (Again, see below as to why.)

Just by way of example, Greenland melting, and doing so increasingly quickly, is geologically not a big deal, having probably melted in the last half a million years alone. Yet we’re still very constrained by our limited imagination – as well as the fact that we evolved in the world as it is and, for the most part, has been the past million or two years – as to what’s “geologically normal”; once again failing to grasp just what it means to change the long term energy trapping properties of the atmosphere to levels not seen on earth in many millions of years, and continue to skyrocket them upwards, and “think” it’s okay just because “oh, right now it’s only a little warmer outside,” and the north and south poles in this mere geologic flash of time are currently still essentially white.

In terms of trying to “assess” this, we can also variously change the range of numbers based upon the best approximations of various ranges and likelihoods of harm. And again, do so just to get an idea, approximation, or better concept, of some – and still not all – of the reasonable ranges of actual risks.

But instead we have silly and incredibly presumptive super long term macro economic projections by some economists: notably climate change “skeptics,” that make remarkably ridiculous presumptions about the rate and value of growth decades from now based upon perceived changes in energy sources, while putting these up against essentially trivialized future “climate change” earth system impacts, which in turn reflect an extremely poor, or simply terribly biased, comprehension of the relevant science. (Perhaps the most well known is Bjorn Lomborg, who irony of ironies is hailed as both a visionary, and practical thinker.)

But not only is this approach mistaken on both ends – presuming a rate of or even change in rate of growth over multiple decades from changing energy sources is so wildly presumptive as to be idiotic, although dressed up in numbers and nice economic jargon it sounds good – but given the value of avoiding cataclysmally negative change, there is also probably a valid premium cost for disaster or outright global catastrophe for some regions, and hence some additional value in avoiding or lowering any reasonable chance of that. (This is for the same basic reason, simplified, that we have most insurance in the first place, even though in pure dollars alone it almost never makes any economic sense to do.)

And, most relevantly of all, but seemingly the hardest to sensibly integrate into decision making, there are heavy intangible, non-measurable costs of trivial, non-sensible, or no action. These probably have no comparison in terms of pure economic growth, since these immeasurable – or really, non measurable – costs (including upon health) may affect basic human utility or “happiness,” whereas continued growth in GDP over time isn’t directly correlated with happiness and utility. (Otherwise, in comparison with only 50 years ago, we’d all be past bursting at the seems with overall utility and happiness in first world countries, and getting happier by the year as we “grow” and increase the speed at which our “widgets” and gadgets perform, as well as what they can do.)

So called practical visionaries like Lomborg miss this concept entirely – among others. And aside from making absurd economic assumptions well into the future, and then treating the projected results of economic “value” for decades hence as ludicrously precise and authoritative figures (which by giving them this patina of authority and seeming credibility makes them worse than no numbers at all), treat all of today’s dollars – discounted at a reasonable future rate – as equal arbiters of true human value over time. Which is about as visionary (or, when it comes to grand scale long term global thinking, ultimately practical) as tree moss.

___________

In terms of the earth’s increasing energy balance, much of the change occurring is also seemingly being masked because our earth system is a “relatively” stable system. That is, it is kept in check by massive ice sheets at both ends of the world, and relatively temperate oceans (see below), with the key being on the word “relatively.” It is also one currently in an ice age. This (along with what had been lower atmospheric greenhouse gas levels) has been keeping our world moderately temperate; and, by retaining an enormous amount of the world’s water locked up in massive, historically stable glaciers, keeping oceans from rising and turning a decent sized portion of all seven continents into sea bottom.

But largely hidden from our eyes – yet not those of scientists who intensely study this – our earth’s system is also starting to show early signs of major, and very significant changes, and, even more relevantly, accelerating changes.

For example: Most of the increases in absorbed atmospheric energy are going into heating our world ocean, not immediate air temperature increases. If this wasn’t the case, air temperature would be shooting up even faster than it is, and long term, that rate of surface air temperature increase is already significant.

Adding even further to the significance of the lagging, long term air temperature trend yet, a preliminary assessment shows that 2014 globally just became the hottest year on record. (And based upon 2014 monthly data, NASA, NOAA, and HadCRU temperature records – the three other major global temperature measuring systems – will likely back this up – NASA and NOAA already have officially. The 3 hottest years on record have now all occurred in the past 5 years, even with massive amounts of heat falling below the surface of the ocean, where it is severely changing the longer term, climate driving, energy balance of this earth.)

And that rate of ocean heat accumulation is accelerating.

Not only that, but the rate of change in major parts of the ocean not only may be faster than in the past ten thousand years, but appears to be several times faster for significant parts of the ocean than at any point in the past ten thousand years.

The first 2014 hottest year on record article just linked to above, incidentally, is typical, in that its statement that “climate scientists expect the Earth to get hotter over time so long as humans keeping adding greenhouse gases...” is likely very mistaken. It will probably get warmer either way, just a lot less if we stop now:

This is because the change in the heat “trapping” property of the atmosphere that has already taken place is slowly (or maybe, increasingly, not so slowly) changing fundamental earth systems that affect long term climate, and which even with a further unchanged atmosphere, will still continue to change these fundamental earth systems and alter the overall basic energy balance of the earth until a new stases is reached under the current general level (but already massively geologically raised) of atmospheric greenhouse gases.

But by sensibly acting (which so far we haven’t in the least), the overall ultimate level of climatic change may be a lot less. And the difference – between continuing to add a lot more to the net energy absorbing and re radiating property of the atmosphere, or instead transforming over to what some might reasonably suggest to be a much smarter way of doing things – may be between what will be a bit of an unwanted adventure (for some, while still a massive struggle and excessive hardship for much of the world’s poor and several disaffected regions and peoples); and what will largely define mankind’s future in a way that will be seen as the great modern event, and mistake, of mankind.

Sure, we have hatred and wars and religious extremism leading to terrorism. But nobody really has any clear answers for those problems yet.

Climate change on the other hand, even if it is a complex issue, does have a pretty straightforward answer: Stop altering the long term chemical composition of the atmosphere at this point; and if we’re worried about transitioning economic growth, put our minds and ingenuity and market genius into coming up with ways to do so in the best way possible.

But it is something we can shift by simply deciding to do it and realizing we don’t need fossil fuels to survive well. Particularly since there are many other ways to get energy. (Far more, and far more efficiently, when and if we change the market dynamics that heavily subsidizes fossil fuels – both directly, and far more indirectly by failing to account for any of the massive negative cumulative external effect through fossil fuels’ continued use. This massive albeit indirect subsidization causes their market integrated cost to be a small fraction of their “real” costs or harm, so in the long run the market is heavily balanced away from far more productive practices and processes, and and heavily towards far less ones.)

And it is something we can shift by simply deciding to do it, and realizing we don’t need fossil fuels to survive well, since there are other ways to get energy – particularly as almost all of these ways involve work, industry and innovation.

These are all things which are part of economic growth, and help build economic growth and an “economy” long term just as surely as would the few extra widgets which – not making any transition to smarter energies – we could expect over the short term but just at far far greater, if hidden, cumulative harm.

Of course climate change refuters argue otherwise. Although take very careful note of the fact that climate change refuters almost to a person argue passionately that continued use of fossil fuels are critical to the well being of mankind.

Notice this oddity – and let it sink in. That is, the scientific issue of whether or not the phenomenon known as climate change is real and significant is completely unrelated to the issue of whether fossil fuels are critical to the well being of mankind. One may believe the latter, but that logically has nothing to do with the former.

Yet, almost all climate change refuters – those who say climate change itself is not very relevant or not even real – believe it; suggesting that again, something beyond objective assessment, even though it is often done under the self reinforcing guise of objective assessment (and “better” science than the world’s leading climate scientists), is driving a great deal of climate change refutation.

This fealty to fossil fuels is also preventing us from assessing the issue in a practical matter, under the false guise of “practicality,” when assessment of the science – what we’re actually doing to our earth and what it means – requires a complete removal from the political ramifications of any conclusion. And which is what we should be debating and discussing.

And in that debate as well, it is key to consider that in the long run what matters is economic growth; not that we grow in the way we “were used to” or that necessarily despoils our land, air, and health just to accomplish it, and that building different energy systems and creating market motivation toward doing so and changing past patterns, is as valid a form of growth as any other kind.

If it is a form that is also consistent with persona choice, but that better protects the perhaps reasonably inalienable rights to clean air, water and a relatively stable climate for ourselves and in particular our progeny, and doesn’t slowly destroy the world we have built up and half or more of the earth’s species along with it, even better. (Note, it’s not that a radically changed climate is bad. It’s that a radical change combined with the geological speed of it – upon even an advanced species that evolved, and built under the prior set of conditions, precipitation patterns, and ocean levels – is bad for us and many species;  including many we rely upon, and others, simply because we’re the “smartest” of the species, that we should be protecting, not wiping out.)

___________

There are several more key changes as a result of this massive long term energy absorbing and re radiating property of our atmosphere, but the most interesting (and likely relevant) ones involves the beginning of change to the massive amount of ice on the globe – stabilizing temperatures, and affecting earth’s key albedo, as we’ll see below.

The ice sheets at each end of the earth are now melting, and the rate of Greenland’s melt is now five fold what it was in the 90s. This again, although Greenland is of course essentially still intact, is a massive rate of acceleration, over a very short geologic time frame. And very recent studies suggest that Greenland may be melting faster than previously thought possible. (Also, with rivers now racing through the still largely white and massive surface of Greenland, the pace is quickening still, as water – moving water even more – is by far the most effective ongoing accelerator of melt.)

Not only are glaciers now melting, but the melt rate in the relevant portion of the Antarctic – the South now – has also tripled in the past ten years. This is also a massive rate of acceleration. And the loss of a significant portion of the West Antarctic Ice Sheet is now already considered likely irreversible.

Widespread methane leakage and eruption from the Atlantic sea bed floor is starting to appear, and along with beginning melt from warming permafrost areas, and warming arctic sea columns, methane eruptions are now starting to lead to tremendous regional spikes in atmospheric area methane levels.

But it’s also sometimes suggested that we can’t do anything about climate change now because it’s “too late.” This idea is often pushed by climate change refuters as another way to avoid dealing with the issue – even though it contradicts the main refuter claim that climate change isn’t a big deal in the first place. But the inherent contradiction is just another example of how almost any argument possible is used to try and refute what’s commonly called “climate change.”

But is there any merit to the idea that it’s too late to act?

Not at all.

While the signs of significant change are undoubtedly appearing, it is an enormous mistake of evaluation (or, more commonly, simply a claim by refuters as yet another argument to avoid redress on the issue), to think we can’t have much significant effect on a rapidly compounding problem specifically arising from actions and patterns that we in turn, specifically, engage in.

We can have an effect by definition. Also by definition, we can have a large effect – since it is we who are continuing to alter the long-term chemical composition of the atmosphere. And we – no one else – who are doing so at a remarkably rapid geological rate.

It’s easy and nice to wax philosophic, make excuses for inattention, or ignore that which seems abstract until it’s too late (and for which later generations curse the heck out of us.) And certainly what has already occurred can’t be changed, and so the focus needs to be on the future, not the past. But moving forward, we control our own future.

Even more important to consider – yet often misinterpreted by a couple of well meaning scientists who already fear the worst (keep in mind however that much of that fear is usually also based upon a belief that we stubbornly won’t change in time), and skeptics who will make any excuse imaginable to perpetuate the ingrained and wildly archaic attitude of the earth as “huge” and man as insignificant and so incapable of significantly impacting it – is that further changes to the long term composition of the atmosphere may matter as much, if not more, than changes that have already occurred.

Here’s why:

The changes that have already occurred will have a cumulative effect upon overall climate via two main mechanisms.

The first is through increased atmospheric energy (heat) capture, as more heat that is kept from retreating to the upper atmosphere and outer space, but retained by our earth atmospheric system – starting with the atmosphere itself – will warm the atmosphere and earth below it, more than the atmosphere and earth below it would have otherwise been warmed in the absence of this increased captured energy.

The second mechanism is the more important of the two, and is the one most often misunderstood (or similarly overlooked or incorrectly trivialized.) That mechanism is the less predictable but increasingly more important effect of this increase in the amount of captured atmospheric energy upon all the other main long term drivers of climate after the sun and total atmospheric recapture (or total “greenhouse” effect).

These most notably include the world ocean (or “oceans” in more common usage), and the massive, normally stabilizing ice sheets near both poles of the earth. (See links just above for evidence of change, and now accelerating change, in these areas.) It also include’s the earth itself – the land and its surface

In other words, in the long term, climate is not just driven by sunlight and the amount of atmospheric energy capture, but by the longer term structural conditions created on earth by those two phenomena in the first place.

This is why if there were no long term greenhouse gases in the atmosphere at all, the earth would be a ball of frozen rock hurtling through space with no or little life upon it, with an average temperature, instead of the current 59 degrees or so, of about zero degrees Fahrenheit. The cold would produce more ice, which would cause far less solar radiation to be absorbed by the earth’s surface in the first place, etc.

But the retained energy of the ocean (in the form of heat) over time interacts with atmospheric energy, and drives much of what produces that atmospheric energy. In fact, along with incoming solar radiation, and then absorption and re radiation by greenhouse molecules of thermally radiated heat from the earth’s surfaces (including ocean surfaces), it’s largely what produces almost all of it.

So if – as the long term composition of the molecules that capture radiated heat in the atmosphere rise – the oceans over time get warmer, the long term temperature and climate will be very different than if just the the long term composition of the molecules that capture radiated heat in the atmosphere itself rose.

This is why what is happening in our oceans is more important right now than short term air temperatures.

And those oceans are gaining energy at an alarming rate.

It is not that the oceans are super hot by geological standards: It is that they are both changing in the direction of gaining heat energy, and they are changing at a rate that as best as we can tell is near geologically radical, as well.

Yet most of the popular examination of this issue is incorrectly focused on air temperature as the arbiter of what kind of change has relevantly taken place, when it is only a small portion of it.

This mistake is made in part because we can easily relate to, measure, and “feel” air temperature, and it’s less conceptual, and more concrete seeming. And it’s made in part because of the massive misinformation and mis-focus with respect to the issue, because many have ventured in with or developed an often fervently held opinion on climate change despite little and often incorrect knowledge of the relevant facts, or an intensely widespread ideological drive to simply try to refute a notion: one that we don’t want to accept; one that’s abstract; one that’s long term; one that involves complex risk ranges, and ones that are largely in the future; and one that technically can’t be “proven” until well after the fact.

But an enormous driver of the amount of thermal radiation that occurs in the first place, is also not just sunlight, but the albedo of the earth. Sunlight is short wave radiation, essentially non-absorbable by greenhouse gases. If sunlight hits a light colored surface, most of it is reflected back outward in its same short wave form, and greenhouse gases don’t “trap” it. If sunlight hits a dark surface, instead of being reflected, most of it is instead absorbed.

This causes two key differences. Albedo loss increases the amount of energy retained by the earth (and then available for re absorption an re radiation by the atmosphere at some point, or at least effecting the balance of what energy is so available). And it tends to increase the retained energy of the surface with the lowered albedo, warming it, and over time potentially furthering the albedo lowering process, unless something is acting to counter act it.

Thus, ice tends to beget more ice, until a balance is reached in line with the general total heat energy being initially made available (the sun) and re-available (atmospheric capture of thermal radiation from the surface of the earth, via greenhouse gases).

So cutting back on albedo, which increases the effective amount of relevant solar radiation – solar radiation that’s actually absorbed as energy instead of being reflected right back in essentially non re-absorbable form – then increases the likelihood of even further ice decrease, until again an overall (relative) balance is reached.

___________

Again, one of the biggest mistakes made on the issue of climate change is to naively assume that it’s some sort of nearly contemporaneous process whereby more greenhouse molecules heat up the air and thus the “air,” and thus “the globe” as well, is warmer.  Or that the overall process can be modeled with pinpoint precision.

Most of that latter mistake – that to know the earth is changing we must somehow be able to model it all in advance with pinpoint short term, pathway and range precision is, again, due to massive misinformation on the climate change issue (and a lot of misleading rhetoric that leads to even further misunderstanding of the issue), as well as occasionally poor scientific explication, which presumes incorrectly that the basic idea of climate change is predicated upon, or even requires, “models,” as well as the even more heavily flawed idea that climate models make predictions, rather than projections, or that they “prove” climate change, rather than serve as tools to help us learn to better project possible ranges and further hone our broader understanding of the issue.

Yet far from being contemporaneous, there has to be a fairly significant lag between ultimate cause and effect, if any significant long term change is present.

Not that some effect won’t be initially present (as difficult as it is to sort out “change” from natural climate variation, which variation is itself intense, and only likely to be far more inherently intense within an increasingly changing climatic system); but that the real changes come from the underlying shifts that take place from a slowly accumulating buildup of energy.

We are starting to see the formation of this right now, as the oceans, for instance, gain heat at a remarkable rate, and glaciers all over the globe, including both polar “ice caps,” start to melt, and, in almost all cases now measured, accelerate in that melt. (Skeptics will ignore all of this, or point to tiny slivers of the entire picture to arrive at a different, and incomplete, picture of what is really going on, often without even being aware that they are doing so while convincing themselves and tens of millions, otherwise.)

Thus as ice melts, the process has to be jagged, non linear, and depending on the amount of input, likely greatly accelerating at some point, even with potentially large shifts over quick periods of time – we just won’t know that last part until (an if) after the fact. But ice melting begets more of the same process that led to ice melt in the first place.

If there wasn’t a massive structural change that had taken place, ice melt would sort of even out in some type of balance with incoming energy, perhaps with shifts even to massive glaciation (as we’ve seen in periods of glacial encroachment during the current, now about two and a half million year old, ice age, as changes in the earth’s orbit around the sun and the tilt of it’s axis and so forth change net sun input at repeated intervals of time).

But a massive structural change has taken place, and is continuing to take place in terms of the earth’s basic energy effecting systems. And this is largely what we miss the significance of, merely because we can’t immediately “see” any seemingly astounding effect. And the first part of that change is the change to the long term thermal radiation trapping property of our atmosphere, which has so far been geologically radical, and is becoming ever more so by the year.

That is, most studies put the level of carbon dioxide in the atmosphere above any level the earth has seen for the past 3 to 5.5 million or so years. One seminal study even put it at 10 to 15 million years. This doesn’t even take into account the addition of CFCs, which are wholly man made, and though sparse, extraordinarily potent (and extraordinarily long lasting) greenhouse gases; nor levels of nitrous oxide or methane, both of which are also well above any recent geological levels we’ve been able to figure out, and which in combination with the massive shift in carbon dioxide, likely put the total global warming potential equivalent (or GWPe) of the atmosphere above simply the 3 to 5.5 million year (or greater) change estimation measured by carbon dioxide changes alone.

What is also rather stunning is that in so far as we can go back and get somewhat reasonably accurate longer term atmospheric gas levels, mainly through ice core sampling, carbon dioxide levels were always far below where they are right now:

Of course, climate change “skeptics” argue (as they argue nearly anything and everything) that carbon dioxide “doesn’t matter.”

But you can just as easily say that “pigs fly.” Except the pigs fly statement is straightforward, and everyone has a basic enough grasp of pigs and the relevant science and empirical analysis to know this is simply not the case. Were it more complex, we could just as easily assert that pigs do fly, if we wanted it to be so.

Here: Take the mass times the acceleration of the mean body weight divided by the hypotenuse of the force squared times 1.6, throw in a few laws of science that sound great but that aren’t being correctly or relevantly applied… divide again by 7, multiply times pi, then take the cube root of half…. etc… etc… and we can see that in fact pigs are almost perfectly designed for flying, but mainly fly at night when we can’t see them do so.

Gobbledygook, sure. But I or someone (or minions of someones) solidly committed to the cause of pig flying belief could have worked on it around the globe to come up with far better rhetoric; limited only by the basic physical limitations and realities fairly well programmed into our evolutionary understanding of the basic differences between swine, and, say, birds, and thus easy empirical validation or falsification of the premise.

Plenty of similar theories abound on the Internet as to why carbon dioxide is similarly inconsequential, to the delight of those wanting to so believe.

But pigs flying is little more ludicrous than the notion that multi million year level changes in the amount of gas in the atmosphere responsible for absorbing and re radiating energy that would otherwise be lost to the upper atmosphere and outer space is irrelevant. Pigs flying is only far more ludicrous appearing, because of our basic knowledge and empirical observations, in contrast with the remarkably complex and geologically grandiose time scale of atmospheric energy retention and transfer, upon a wildly diverse, divergent, inherently wildly variable, global scale. (And those decades, if not more, stand in sharp contrast to the rather more immediately instantaneous nature of pigs flying or not flying.)

But again, the increase in absorbed energy from dramatic atmospheric increase in its long term molecular absorption and re radiation properties is altering the energy balance between land sea, below sea level, and air – and increasing the total net retained energy of the physical earth (and ocean) itself, which is what matters here.

Ice covered surfaces – whether land or sea – stay largely insulated, as most sunlight is reflected back outward.

Non ice or snow covered surfaces are not so insulated, and far more sunlight is absorbed by the surface and retained as heat energy. This either slowly increases the heat energy of that mass (be it land under permafrost areas, permafrost itself, glaciers, ice sheets, ocean water columns, or parts of the earth itself), or is released back as heat, including as thermal radiation – which, again unlike reflected sunlight, is then absorbed and re radiated in all direction by greenhouse gases, based upon the amount (and type) of greenhouse gases in the air to both in part warm the air, and further warm the land and sea below it, and so on.

This is part of why arctic sea ice matters so much. The north pole is open water, and it normally stays covered during the northern summer months when the sun’s rays are hitting it.

That is now changing as the total net amount of summer arctic sea ice melt has been rapidly decreasing. (Climate skeptics even repeatedly point to a very recent “increase” in total sea ice extent, coming off of a year – 2012 – that crushed the previous minimum sea ice extent record – 2007 – by nearly 20% and which was almost 50% below the 1979 to 2000 average – to argue that climate change is a “hoax,” and arctic sea ice is “increasing,” which in climate change variability terms is barely a baby step removed from arguing that the globe is getting hotter because Wednesday was much warmer than Tuesday in New Zealand.)

While data is more exact since 1978 when NASA launched the Scanning Multichannel Microwave Radiometer (SMMR), here is the general trend in arctic sea ice: (Data from the National Snow and Ice Data Center)

Notice that the chart is not just measuring total change from year to year, but the difference in ice extent from the overall average from 1981 through 2010, which average includes a great deal of (downward) change already – and yet the second, or later, part of the graph continues to decline.

And this overall longer term pattern of arctic sea ice loss is now even starting to cause increased warming of shallow sea bed columns, leading to thawing of long frozen methane hydrates and – along with increasing if just beginning permafrost area releases – heavily spiking climate change compounding atmospheric increases in these areas.

Climate change skeptics also repeatedly argue that polar ice is “not decreasing,” and that climate change is not real, because antarctic winter sea ice extent is increasing.

This is sort of like arguing that your basement is not flooding if one room that normally has a foot of water in it is at 2 inches, and the other 3 rooms that normally have no water, are filled to near the ceiling.

While some areas of the sea surrounding Antarctica have seen large ice decreases, and other areas large increases (once again, indicating changing conditions), overall winter sea ice in the area (not summer sea ice as is being lost in the arctic, although that point is almost always overlooked as well), in the area is increasing at a slight rate.

We don’t yet know why for sure, as there are many things which we don’t yet know for sure (as skeptics once again take the ongoing process of science learning itself and conflate that with a false refutation of basic climate change). But this is likely due to a combination of conditions, all of which seem to be very strongly climatic change related, and which consist of fairly significant Southern Annular Mode wind intensity increases which push newly formed ice northward (away from the south pole and away from the Antarctic continent) allowing for more ice formation, as well as increasing surface water insulating glacial melt for underneath portions of the Antarctic ice sheet.

And the antarctic sea ice extent is also increasing at only about one-fifth to one-tenth of the rate that arctic sea ice is being lost. And, again, it’s increasing during the southern hemisphere’s winter months, when the sun’s rays aren’t present, or are just glancing off the horizon, and far weaker.

And both Greenland – northern polar area – and Antarctica – southern (and directly) polar land masses are experiencing net ice loss. (But some climate skeptics, practicing their own brand of what we’ll humorously call “science,” have found ways to in their own minds at least refute this as well.) And both northern and southern polar regions are now both experiencing accelerating net ice loss as well.

Why skeptics would focus on only one of four quarters of the total polar ice picture to argue that polar ice is increasing, rather than four quarters, again only has one plausible explanation. That is, there is no plausible scientific explanation as to why three quarters of the full polar ice picture would be ignored and one quarter (and a very misleading one quarter at that) – as if that presents the full picture – would be focused on to draw a conclusion as to whether our polar regions are melting or gaining ice or not, or whether climate change is “real.”

And that is the same explanation as always – the pattern of using any seemingly logical or valid argument possible to refute, “deny,” or not accept climate change, and the basic idea that mankind is now powerful enough to be inadvertently affecting our world also in powerful ways that we were perhaps not fully in tune with, and doing so through patterns that due to habituation, presumption, fear of near term and concrete change (the weather is always changing, so the abstract notion of “climate change” over a very long period of time is not really change in this sense), or a host of other reasons, we perhaps don’t want to change.

It may still be “relatively” slight right now, but ice is starting to melt, and it will keep melting until a new stases is reached – one where energy is in balance between the earth itself and the atmosphere, given the amount of sunlight reaching the earth, the amount of sunlight being reflected, and the amount of thermal radiation being absorbed.

The more the atmosphere changes, the more radical, and likely compounding, that stases will ultimately be. As ice melts, more heat energy is gained, since less sunlight is reflected. This begets more energy retention by the atmosphere, which is also occurring due to more greenhouse gases, etc.

Snow is fairly similar to ice in terms of having a high albedo. And about 24% of the total northern hemisphere land mass is permafrost – essentially permanently frozen ground, normally covered with snow or ice.

And while the signs are still early, our permafrost regions are also starting to melt.

Even more tellingly, in ground temperatures under many permafrost regions are increasing at a faster rate than the air temperature above them, indicating an increased likelihood of future, and accelerating melt.

This is key not just as an indication of a shifting earth energy balance, but also, again, because of this issue of albedo, plus here a second, similarly interesting issue.

That is, a change from snow and ice cover to open tundra represents a shift from most solar radiation being reflected back upward, to the majority of it being absorbed. (And, while still much higher than darker ground or open vegetative tundra, even slushy melting snow and ice has a significantly lower albedo than frozen snow.)

But in addition to the significant fact of massive upward energy shifts associated with any significant change in overall surface albedo, here there is a second self reinforcing, or amplifying mechanism to melting, or warming, permafrost, as well – one that again also kicks in far from linearly:

Namely, the northern permafrost also houses almost two times the amount of carbon currently found in our entire atmosphere. Some of this carbon will also be released in the form of CH4, or methane.

This is remarkably significant: Although it essentially ultimately breaks down into carbon dioxide (hence why methane’s global warming potential decreases over longer periods of time), over a 20 year period the GWPe or global warming potential equivalent of methane is about 83 to 86 times that of carbon dioxide. (GWPe is a measure of a gas or compound’s thermal radiation absorption and re-radiation properties in comparison to the fairly low, but still significant capacity of carbon dioxide, which is always measured as “1,” and used as a basis of standard comparison for all other gases and compounds.)

A molecule of methane only has about 36% of the mass of a molecule of carbon dioxide. While many articles on the subject of global warming, and even global warming potential are sloppy on the issue, GWP is measured per unit of mass, not molecule. So an identical mass of CH4 over a 20 year period absorbs and re radiates about 83 to 86 times more heat energy than an identical mass of CO2.

But the effect would only be about 36% of that amount per molecule (or per carbon atom) since a molecule of methane (one carbon atom and four hydrogen atoms) has about 36% of the mass of a molecule of carbon dioxide (one carbon atom and two oxygen atoms). So the GWPe of methane on a molecule per molecule basis, in comparison to a molecule of carbon dioxide, would represent about 31 times the heat energy absorption and re-radiation of each molecule of carbon surrounded by two oxygen atoms (over a 20 year period.)

This is still an enormous difference: For each trapped carbon atom released as a molecule of methane, the total cumulative global warming potential effect in terms of the amount of heat energy absorbed and re radiated per molecule over a 20 year period, is still about three thousand percent greater than for each atom of carbon released as a molecule of carbon dioxide. That’s a lot.

So to try and help with visualizing the difference, even if probably an unrealistic scenario, imagine if suddenly the permafrost unexpectedly just melted like crazy and a little over one half of the total carbon stored therein was released. If it was all released as carbon, for a while anyway it would be like a (still incredible) deluge of carbon equal to nearly the total amount of carbon already currently in the atmosphere.

On the other hand, if it all released as methane, it would be like a (far more incredible) deluge of carbon equal to nearly thirty times the total amount currently in the atmosphere, or an effect 30 times greater.

In other words – in terms of adding energy to the total earth atmosphere energy balance – a release of one giga-tonne (a billion tonnes) of carbon as methane, over a 20 year period at any rate, would be equivalent to adding thirty giga-tonnes of carbon as carbon dioxide

Again, the above scenario is a little bit ridiculous. But it is helpful in grasping the magnitude of the difference between methane, or CH4, and carbon dioxide, or CO2:

Again, over time, CH4 breaks down into CO2. (Hence why if its GWPe is measured over 10 years, the number is much higher still. But if measured over 100 years, while still far higher than carbon dioxide, it’s well below 86: about 23 times more powerful per unit of mass, or about 8-9 times more powerful per molecule, since for most of that period the carbon will exist as carbon dioxide and not the far far more potent, but shorter lived, methane.)

Grasping the magnitude of this difference is also very important for getting a feel for the relevance of the permafrost issue, since while it is unknown exactly how much carbon would release as each gas, almost all estimates suggest a fair to very large amount of it would emit as methane. (And again, there is also an enormous amount of methane stored in sea bed floors, which, from essentially dormancy as best as we can tell, seem to be starting to erupt.)

So it’s significant. Which, if the permafrost starts to severely melt – particularly in combination with warming sea bed columns, is sort of like saying the planet Jupiter is “large.” In other words, hugely significant.

We just don’t know to what extent this will occur. But one thing is fairly certain:

The higher the overall heating of the earth – which comes directly from sunlight, which we don’t control, and which is what it is (and while it fluctuates, it is relatively stable, even if it has ironically been going down lately and still the globe continues to amass heat energy, and on an accelerating basis), and from the long lived greenhouse gases in the air, and all that they drive (including water vapor – itself a greenhouse gas on the one hand, but an albedo increasing blocker of sunlight, on the other -the albedo of ice versus melting ice versus open tundra, as well as ocean delivered heat, etc.), the more likely the permafrost is to shift increasingly rapidly into being non existent frost, with major consequences towards a (from our perspective) radically changing earth.

We may have already set some permafrost change into motion, depending on future mitigation strategies (aside from greenhouse gas emission curtailment). But the more set in motion, the more compounding the effect, particularly as permafrost starts to significantly melt, spewing out more heat absorbing carbon atoms, and greatly decreasing albedo and thus greatly upping the heat energy retention through solar absorption versus reflection, by the earth’s surface in the first place.

Since ice sheets are already starting to melt – even if the overwhelming majority of the northern and southern polar ice caps have essentially just begun to do so – and the ocean has warmed at a fairly remarkable geological rate, while atmospheric levels of greenhouse gases are at multi million year level highs (let alone the more relevant – and yet avoidable – fact that in geologic terms, due to our unmitigated actions, they’re still skyrocketing straight upwards), it is likely there is a significant amount of future warming and some likely impact upon the permafrost regions already to be realized, even if atmospheric greenhouse gas levels stabilized (stopped going up) tomorrow.

But whatever future warming or change may already be in store (and which depending on what we learn as we go forward we may be able to mitigate a little bit depending on time frame and several other factors), that’s a huge difference from pouring extraordinary amounts of essentially very long lived gasoline on the seemingly slow brewing geologic fire, that continuing to add to total atmospheric greenhouse gas levels is in effect doing. All of which can be ceased as we grow in a way that’s actually in our interests, rather than against them, through sensible recognition of just what the issue is first and foremost, the abeyance of myopic fear that we need to engage in counterproductive practices to “grow,” and some proper motivation, incentive, and pulling together, on the issue.

But the first step, just because the house is seemingly slow burning or most of the burning is hidden deep within the rafters, is to stop pouring barrel fulls of gasoline upon the fire, which is what the silly arguments that “there’s no point in acting now,” essentially argue against stopping.

___________

The more basic reason that stopping or changing the actions now causing the problem may be even more important than what atmospheric change we’ve already effected, even with already high long lived greenhouse gas levels, is that despite some of what’s been written, the climate change phenomenon likely compounds in a non linear, unpredictable, and shifting way until a chain of events is set in motion that barring major earth re engineering (which could bring about even bigger problems, nobody knows, and may be too late at such point anyway) will continue until a radically new (for us and many present day species) underlying earth stases – and climate stabilizing – condition is reached.

Such as the full blown melt of permafrost regions sufficient to set out enough carbon, and sufficiently decrease albedo, to finish off the job; the warming of sea columns sufficient to melt most of the barely frozen methane clathrates among sea bed bottoms (all of which would emerge as methane, not carbon dioxide, and which – though estimates are a little more speculative – in total represents somewhere between 1 and 4 times the amount of carbon in the entire atmosphere, and which released as methane would be geologically sensational), or, also through ocean and ultimately some air warming and other changes (all amplified by some of these compounding effects and others), enough energy change is built in to set both ice caps on an irreversible course of near full melt, for example. That would means hundreds of feet of sea level rise, not dozens.

We may have already crossed  a threshold or two, but there are likely more, and ones that are more significant.

Also, pause for a moment if you were taken aback by the mention of dozens or hundreds of feet of sea level rise. Geologically, that’s not a big deal. We’ve just been constrained by our limited sense of the world and our own recent evolution and circumstances. While geologically, the change we’ve already wrought to the atmosphere is already significant, and we’re amplifying it at breakneck speed. But we have very little sense of that, at all. So it all seems abstract.

But it’s not. It’s just hard to fathom. It covers a complex risk range. And it’s subject to a remarkable level of misunderstanding and outright self reinforcing “denial” and accompanying misinformation on the topic, which even goes so far as to conflate every little mistake of science or “over estimate” (while ignoring all of the under estimates and, more importantly, the more important fact of the change in the first place), with “refutation” of climate science itself.

This is very easy to do, being as we’re a species that is extremely illogical, relative to our capacity to think we are being logical: Particularly climate change skeptics with some science background who are absolutely convinced they understand this topic better than the climate scientists who professionally study it, and who often turn to self reinforcing and highly popular misinformation sites, housed under the guise of science and a steadfast belief in the idea that mankind really can’t much affect the earth’s climate. (Which is about as sensible as the inability to see hundreds of years ago that the earth pretty much couldn’t just be flat, rather than round, appealing as the flat theory was at such time to the great majority who, with fervor and righteousness equal to climate change skeptics today, so tenaciously clung to it then.)

Hence part of why there is such massive misinformation on the topic, getting in the way of even the most basic understanding of it.

The sun and (very slowly cycling) earth orbital patterns control the initial energy input, the atmosphere controls the re absorption as well as all things that then indirectly affect that re absorption (albedo, water formation and evaporation, etc.), and at this point, we control the atmosphere. We can continue to add to it at breakneck speed and later ludicrously (from a scientific perspective anyway) leave memorandums to future generations that “we didn’t know”; continue to add to it; or stop adding to it.

Whatever we do, in terms of the future energy balance of the earth, and thus it’s (and our) ultimate climate, it matters a lot. This is something that rhetoric aside, can’t be avoided. We’re the ones changing the atmosphere.

The atmosphere plays a huge role in absorbing energy – in fact the entire role in absorbing energy.  And absorbed atmospheric energy ultimately plays a large role in shaping the energy balance, and climate of earth.

While a small change may be balanced out by stabilizing forces, a large change has to change those stabilizing forces, and that is what we are already slowly starting to see.

It’s just a question of how much.  Which is also up to us.

The Self Reinforcing Pattern of Climate Change Naysaying

Mankind can only understand what we’re ready to understand and accept what we’re ready to accept.”

The first half of this piece, describing many of the geologically significant and very rapid changes suddenly taking place – all in the direction of decades long leading climate scientist prediction – has been improved and updated, and is now found here.

_______

The global climate, and to a greater extent many regional climates, is starting to change. And it’s starting to change in a way that’s likely unprecedented in the last 11,000 years, or if not, represents an extremely unusual degree of upward global warming over any random 100 year period over the same time period.

This current measured change is also just in terms of just temperature change alone, which although most noticeable and most talked about, may be the the least significant of the major changes taking place right now, and which may be even more likely to be unprecedented to over the past 11,000 years, and even more important in terms of shaping our future climate. (For example, the speed of change to our oceans heat content, and possibly even the speed of change of polar ice cap melt and acceleration of that melt, as covered here.)

Yet despite this, there is a great deal of hype and rhetoric claiming that the earth’s climate is not really changing. Or that if it is changing, the change isn’t very notable or relevant.

There’s even more rhetoric (if that was even possible) to the effect that if the climate is changing and in a way that is relevant to us, that such change is just (bizarrely) “coincident” to our multi-million year increase in the concentration of long term “energy re capturing” greenhouse gas molecules, or to the fact that climate scientists have been predicting this for many years for very basic reasons, known for almost centuries.’

Of course when these claims are made, they do not state “bizarrely coincident,” but ignore that little detail, and instead simply proclaim that “climate changes, it’s changing now, since it changes and it’s changing now, we’re not causing the current change.” Which is not only illogical, it also wholly misconstrues what the climate change issue is:

In other words, we didn’t notice signs of an altering climate, and then try to figure out “why.” We discovered a massive geological (and ongoing) effect to the fundamental long term energy trapping nature of our climate; one that would change our climate. And then we’ve seen corroborative signs of just that, and in very broad based, global, accumulating, and even accelerating fashion.

So the whole “climate has changed before” is not only irrelevant, it misconstrues what the issue is, which is the expectation of change due to the geologically massive increase in long term molecular energy re-absorption and re-radiation.

But skeptic also seek not only to turn the actual issue upside down, but also refute such signs of change as well, by any argument possible, so long as it fits the conclusion that there has been “no” or “less” change, whether,

Even the seminal 11,000 year Marcott study just linked to – which doesn’t even account for the more important and even more unusual shift in our oceans and sudden start to and rapid acceleration in net ice cap melting, and net ice cap melting at the North Pole, and the South Pole both – but just air temperatures, has been repeatedly called almost every negative name under the sun by non scientists, and a rare few “pseudo” scientists who don’t understand, or don’t want to understand, what the authors actually did and did not do (see minute 3:00 to 4:30 specifically); and who in many cases don’t understand the actual paper.

The Marcott paper has even been turned into a sort of false scandal because the study not only tried to reconstruct the past 11,300 or so years, it compared the best (and only record) of the past 11,300 years – which involved said reconstruction – to the best record of the modern era (aka, the actual temperature record), rather than to a far less robust “reconstruction” of the modern era which would have made no sense.

Why would we compare our best reconstruction of the geologic past to our very worst, rather than our best, assessment of the very short recent geologic window in which we are currently in. But that is exactly what critics of the study in fact not just called for, but repeatedly labeled the study all but “fraudulent” for not doing – when to have done so would have made almost no sense.

In the interview with one of the study authors – Jeremy Shakun – also linked to just above – Shakun explains that it’s reasonably possible that a warming period of about the same or greater than the globe has experienced over the past 100 years could have occurred during some prior 100 year Holocene period; but that it is unlikely to have, or at the very least would have been very unusual, which is by far and away the more important point of the study. Namely, that the current 100 year warming has been extremely unusual. for any 100 year period of the past 11,000 years.

And the conclusion of the study itself (subscription required) actually noted:

Strategies to better resolve the full range of global temperature variability during the Holocene [the last 11,300 years], particularly with regard to decadal to centennial time scales, will require better chronologic constraints through increased dating control. [And, albeit to lesser degree] higher-resolution sampling and improvements in proxy calibration.

The study also never claims that the current period of warming is unprecedented, as much of the hype directed against it also erroneously claims. And it is most relevant for taking all of the available data and studies and coming up with an exhaustive and complete look at the entire Holocene – or since about the end of the last “glaciation encroachment” – to try and get a sense of just how the climate generally moved over that time, and also how the modern era might compare. And essentially it found that:

Our results indicate that global mean temperature for the decade 2000–2009 (34) has not yet exceeded the warmest temperatures of the early Holocene (5000 to 10,000 yr B.P.). These temperatures are, however, warmer than 82% of the Holocene distribution as represented by the Standard5×5 stack, or 72% after making plausible corrections for inherent smoothing of the high frequencies in the stack (6) (Fig. 3). In contrast, the decadal mean global temperature of the early 20th century (1900–1909) was cooler than >95% of the Holocene distribution under both the Standard5×5 and high-frequency corrected scenarios. Global temperature, therefore, has risen from near the coldest to the warmest levels of the Holocene within the past century, reversing the long-term cooling trend that began ~5000 yr B.P.

The paper is not claiming that the current temperature range of the 2000s is the warmest of the past 11,300 years. But that it is warmer than probably about three quarters to four fifths of it. And that combined with the fairly cold temperatures of the first decade of the 1900s -, which the paper approximates to be among the coldest temperatures of the Holocene – the shift has been unusual.

The 1900s came on the tail end of a shorter downward period in temperature, and since climate is temperature over several decades, the 1900s decade could just as much have been warmer than not. It’s also a little bit random, since the temperature of the first decade of the 1900s is somewhat arbitrary; though it is around the time that represents a general beginning of the more significant part of any longer term temperature rise, it trails mildly behind (as expected) the very beginning of industrial age alterations to the atmosphere, and it forms a clean century period to the last decade on record. (Chart by NASA):

In the meantime, extending the relevance of this chart further, and as secondary as air temperature is to the more important issue of ongoing ocean heat energy accumulation and accelerating polar ice cap melt, 2014 is on route to likely being the warmest year ever on record.

The Marcott paper is essentially notable for giving some sort of feel, however, flawed, for how the current change over the last century might stack up against the past 11,000 years – with some guesswork and possibility for error as, for the historical period of course, the authors used reconstructed data, which is imperfect: as are, to some degree anyway, interpretations drawn. And there really isn’t any degree of accuracy below a several hundred year period.

So as pointed out, although it is unlikely, there could have been shorter blips that evened out. (There are also widely circulated temperature charts that show one or two fairly radical short term blips. But these are taken solely from arctic ice core samples; and while they are significant, regional temperatures may have varied much more than global, and arctic and antarctic temperatures often moved in opposition, so taking just a one core sample as indicia of the temperature of the globe gives an idea, but can also be a little to very misleading.)

But as the video link above illustrates, though neither Shakun (nor the paper itself) dismiss the fact that shorter term blips could have occurred that represent a greater end over end 100 year temperature increase, Shakun was less concerned about that possibility in terms of present day relevance since we know there is a cause for the current change, we know what that cause is, that cause is not disappearing but growing as we continue to increase the overall level of long lived greenhouse gases in the atmosphere, and the current change is not likely to be a blip.

For what it is it’s an interesting study. But the rancor directed against it, for which just a few links were provided above, is extraordinary, and telling. In fact, google Marcott, and in just the first two pages or so of results you will find just as many, if not more, “articles” claiming it is a fraud or something close to it, than not.

Notably, search deeper, despite the massive avalanche of written articles and editorials and commentary calling the study a fraud or all but a fraud, you will still have trouble finding even one scholarly science magazine or journal published article refuting, or in terms of its relevance, correcting it  – and publishing articles to correct or refute prior studies and claims is what science is all about. Again, while a bit snarky, the link from above helps explain why.

_______

Although the climate of the globe is changing, and such change generally has been expected, there is a great amount of claim that the climate hasn’t changed, or that if it has, it is simply random, and thus what the earth would be doing even if we hadn’t increased the concentrations of long lived greenhouse gases to levels not seen on earth in millions of years.

Such assertions also mean by definition that said change, by similar remarkable coincidence, is not changing or affecting the climate; which in turn is thus proceeding along the general path it would have anyway had our atmosphere not been altered. (In scientific terms this is called a flight of fancy. In much of the media’s eye, and climate change refuters eyes – some of whom are scientists but very few of whom are actual climate scientists – it is called a “point of view.”)

And thus yielding two remarkable and independent coincidences at the same time – the climate is exhibiting unusual change over the past 100 years, and yet exactly what scientists believe would cause such change – an increase in atmospheric greenhouse gas concentrations to levels not seen on earth in millions of years, is, by even more remarkable coincidence, itself otherwise not altering the climate of the earth while that climate bizarrely just starts to shift on its own, anyway.

Yet both of these together have to be accurate to support the basic climate change refutation claim. And the chance would be the probability of each, multiplied together.

For instance – forget oceans radically heating, ice caps on both poles melting, and accelerating – imagine that there is a 1 in 10 chance of just the global air temperature heating as it has over the past 100 years, even though the seminal and only real study on the issue suggests that the chances are low that the earth as a whole increased this much in temperature in any single 100 year period over the last 11,000 years even once; and that there is a 1 in 20 chance that increasing the level of long lived greenhouse concentrations to levels not seen on earth in millions of years would itself somehow not really affect the climate.

Then the chances of this change we are seeing being simply, oddly “coincident to,” but essentially not caused by, our atmospheric alteration, would be .1 x .05 or .005, or .5% or 1 in 200. And that’s overstating it, because the numbers used here are high estimates.

Regardless of what the actual number is, take note of the fact that in a field of unknowns (which climate change refuters stipulate, since they use the same “unknown” argument to also simultaneously argue against climate change), the most basic argument for climate change refutation relies upon the choice of an outcome or interpretation which is very improbable, over the one that is very probable. (The opposite of Occam’s Razor, on speed.)

And thus relies upon the choice of an outcome over the one that actual scientists who study this issue themselves professionally, overwhelmingly support (once again hype to the contrary notwithstanding): Namely, the bizarre coincidence we are seeing is of course connected to the change we produced and that we overwhelmingly expect to have this type of general – climate affecting, and likely overall warming, if erratic – effect.

That is, we expected climate to change, and it has now started to.  And most of that change is affecting the things that will both affect future change and drive climate directly, and that are being all but ignored while we over-focus on the misleading picture of air temperature alone.

Yet there is a great deal of hype that this change also wasn’t expected. This is done by cherry picking and focusing in on specific predictions and numbers – which of course are often unexpected because we never could, and still can’t, predict exactly what level of change will occur or along what path.

Part of this in turn stems from the massive presumption that climate change is based upon models, and that these models have to predict it almost exactly for climate change to be real.

Both premises are mistaken, as models – while easy for scientists to problematically over rely upon in trying to make seemingly concrete representations to the public – are used to better understand the issue and help make general projections. Not to prove the issue or even establish its existence.

Some of this hype is also based on an artificially narrowed focus on a small percentage of scientists who weren’t really fully aware of the issue or originally didn’t expect it to be a problem – most of whom weren’t scientists who professionally studied the atmospheric change, climate, and the geologic record – and who know acknowledge, “I didn’t realize before that it was a problem”; any prediction that underestimated something as therefore a lack of expected change (while simultaneously focusing very publicly on any prediction that overestimated something as “proof,” however irrational to do, that climate change is not real – thus in tandem by arguing against climate change because some things, or the level of change involved, “were underestimated,” while other other things “were overestimated,” mistaking the basic process of science itself for an actual refutation of science – in this case climate change science); or again upon a very select cherry picked set of papers.

The most common of these go all the way back to the 70s when it became in vogue for a while to talk about long term global cooling – Time magazine even ran a cover story on the issue that decade.

This made sense at the time because absent our atmospheric alteration, the earth has been in an ice age. (Ice age refers to the entire period since large masses of ice formed at or near both poles of the globe, although we often call periods of glacial encroachment into previously unfrozen areas “ice ages” as well, and periods in between “interglacials.”)

Over a period of many hundreds of millions of years, or even longer, carbon dioxide levels have come down, as carbon has been slowly sequestered into the earth.

This of course is the nub of the problem, as we are reversing that process in what is in some sense a mere geologic instant. And then when the earth doesn’t respond “instantaneously” in geologic terms, we go, “oh, it must not be much of a problem, or we go “this change we are seeing would have occurred anyway.”

But the earth, regardless of the generally cooler period leading up to 1970s publicity on “cooling,” wasn’t in a longer term cooling phase anymore because of the radical, and rapid, reversal of this long slow downward carbon drift from atmospheric gas to in ground sequestration as solid carbon matter.

And back in the 1970s, when a good portion of the carbon dioxide in the atmosphere right now hadn’t even been added – and detailed climate change science was somewhat in its relative infancy – scientific papers that concluded the earth was going to warm still outnumbered papers predicting longer term cooling, by about 500%.

Back in the 70s. Well before 40 some years of upward temperatures, declining arctic sea ice (with antarctic sea ice, albeit in wintertime not summertime, increasing about about one tenth the rate of arctic sea ice decline, and due to rapid geological changes in that area – namely increasing Southern Annular Mode Winds pushing ice northward to allow the formation of new ice, and cooling waters from ice sheets melt insulating the surface), increasing weather volatility and extremes, increasing permafrost surface temperatures,and melting and now accelerating melting at both polar ice caps. And well before another 40 years of massive additions to the atmospheric levels of long lived greenhouse gases. And after a few decades of mild overall cooling.

Even though though all that, the general concern, the far more popular (if not popularized) scientific concern, was a longer term trend of increased global warming and volatility, due to large increases to the concentrations of long term greenhouse gases in our atmosphere.

Consider that fact the next time you hear (or consider making yourself) the argument that we don’t know what we’re talking about now because 40 years ago “global cooling was predicted!”  It’s irrelevant, and incorrect. As are most of the arguments made to “refute” the basic climate change idea. And thus consider thus the extent to which any argument will be made to support the idea that our real knowledge in the general idea of climate change is “all over the map,” and therefore, climate scientists (except the rare few who think climate change will somehow be mild, though no real cohesive theory that stands up to muster other than platitudes housed as science have ever been so advanced) “don’t know what they’re talking about. ”

These arguments just sound good, and appeal to those who want them to be appealing; or, frankly, maybe to some who aren’t as good at science as scientists who professionally pursue the issue at hand but who upon hearing some clever rhetoric or argument, often usually by another non scientist or scientist who similarly doesn’t professionally study or have intimate and accurate knowledge over the issue at hand, fancy themselves to be as good or better and as knowledgeable or better as climate scientists on the specific information that is relevant – and the knowledge to not only know more about the issue and know it better, but thus also know what it relevant better than climate scientists as well.

Again, a lot of this hype stems from the same hype hurled against general climate change concern to begin with; namely, we can’t predict the exact future, and the exact path of that future, so the claim that the climate will or is even likely to change is therefore wrong.

___________

As a result of this hype and a lot of the misinformation, as well as excessive fealty to fossil fuels and concern over the possible avenues of climate change redress, many members of Congress believe the science phenomenon of climate change as expressed by climate scientists – is not real. Yet again, they’re not scientists.

And most of those who are climate change “skeptics” outside of Congress, similarly, are either not scientists or not climate, atmospheric or geological scientists who professionally study the actual issue of climate change.

So what has happened is that an enormous majority of non scientists, and to a much more limited extent “scientists” in unrelated fields, nevertheless assert greater knowledge on the issue of climate science, than actual climate scientists who professionally study the issue.

And a big part of what is driving – or in the minds of climate change refuters, at least substantiating – this presumed expertise on the part of non scientists that nevertheless supersedes the knowledge of scientists who actually study the issue, is that having a scientific understanding of the reasons for likely future change is being falsely conflated with the ability to predict the exact amount of global temperature change that will be realized, or the precise range of specific change over an exact period of time.

For what climate change skeptics argue is that we must be able to accurately predict the specific path of all change in advance, in order for the idea that we face high risks of significant to major climate shifting to even have validity in the first place.

This confusion (or claim) has been driven by a lot of rhetoric on the issue, which, along with attempts to downplay the science of climate change as well as this claim itself, is in large part based upon a strong belief in things that have nothing to do with the science of the issue.

This has greatly denigrated basic climate change understanding. Yet it is scientifically specious (and in some ways scientifically ludicrous), to conflate our knowledge of a geologically radical and ongoing net addition of energy onto a dynamic, complex long term and non linearly changing global energy, or “climate” system, with the idea that we must therefore not only know that the system has to significantly change, but also know each detail about it in advance, as if we could predict or model it out as if writing a movie script after the fact.

Yet driven by massive often self reinforcing misinformation and a strong desire to refute the very idea of a significant climate shift threat rather than simply examine in dispassionate fashion, in one form or another, and dressed up in various rhetorical and ostensibly logical ways as attempts to “examine in dispassionate fashion,”this is exactly the argument that has served as the core basis for misnamed climate change “skepticism”; a movement that essentially tries to repudiate basic science, often, ironically, in the name of it.

And it is, again, in a nutshell, the idea that since we can’t predict it exactly, the risk itself must not significantly exist.

In most other contexts, this would be more easily seen for the irrational claim that it is. But given the massive,reinforcing and self perpetuating misinformation on the climate change issue, and the seeming non science related drive to “interpret” or view the issue in a certain way, it passes for serious anti climate change analysis and belief.

As does, similarly, the otherwise irrational notion that we are not affecting the climate now by our multi million year alteration in the level of long lived atmospheric greenhouse gases, simply because climate “can” and does otherwise change, even though it would be extremely unusual for it to have changed even in the degree we have so far seen, simply by coincidence.

And then if so, again, it would be even more unusual for earth’s climate to not otherwise have been significantly affected by the rapid atmospheric change we have occasioned, but yet again only at the very same (pin prick of geologic) time by this fluky bizarre “coincidence” that we are seeing be perfectly natural:

And thus, even more bizarrely –  and at the very same time as this “fluky” coincidence of a long attendant overall march upward in air temperatures while even more significantly the ocean gains increasingly in heat, and ice sheets at both ends of the earth start melting, and also at an accelerating rate – it would mean that a wild multi million year shift in the concentration of long lived atmospheric molecules that “re capture” heat energy would somehow be having almost no affect, despite basic physics.

In all probability, basic physics still applies. And, arguments by skeptics notwithstanding, an increase in the atmospheric concentration of long lived molecules that absorb and re radiate thermal radiation, to levels that have now not been experienced on earth in several million years, is going to slowly change the earth and lower atmospheric energy balance: as the earth itself – permafrost regions, the oceans, shallow sea bottom areas, other water bodies, the land under permafrost regions, ice sheets – increasingly warms, and slowly starts to add increasing amounts of net energy to the basic structural conditions that, along with the atmosphere itself, drive climate on earth.

Rhetoric can and has changed people’s perception of this, but it doesn’t change what is going on.  Somehow this gap between the rhetoric we are hearing, and what is really going on, needs to lessen.

Not Necessarily Just Change over Time, but Increasingly Volatile Weather, Precipitation, May be Most Problematic For Agriculture

Updated and edited 11-10-14
Climate has a lot to do with how plants grow. Naturally this is relevant to us because among other things plants represent our food supply, or the basis for it.

And as has been expected, that climate is starting to change. (Update: Claims that our changing climate just “coincidentally” reflects normal random movement and not our ongoing atmospheric heat energy absorption changes make no scientific sense on any level. A big part of the reason why, as well as the pattern that nonetheless perpetuates such claims, can now be found here.)

As the link just shared points out:

13 of the 14 warmest years on record have all been in the first 14 years of this decade…and 2014, according to NOAA, is on track to become the warmest year ever.

Despite this, most of the increased heat energy from a higher level of long lived atmospheric greenhouse gases is going into the world ocean, which has been gaining heat for decades; and at a rate many times faster than likely at any time in the past 10,000 years, and accelerating.

Net glacial ice sheet melt is now occurring at both poles, and at least one set of ice sheets in the more stable and larger Antarctic (worth about 10 plus feet of sea level rise on its own), is now facing likely irreversible melt. And ice sheet loss is not only occurring, but accelerating in both polar regions, particularly in Greenland, where the rate of acceleration is becoming near “remarkable.”

There has also been an increase in extreme weather, along with changes in precipitation intensity. While at the same time, much of what is written on the tie between our changing atmosphere and unusual extreme weather events cherry picks select data or mistakes basic statistics, and misconstrues the basic reality that everything that is a part of our climate is affected by our atmospheric shift, because our climate to some degree has already been affected by that atmospheric shift.

Yet we over focus on the almost silly question of whether “climate change” did or didn’t “cause” this event, when it caused all and none, simultaneously, as it’s now a part of our world, and all climate is a reflection of that world.

Similarly, isolating out whether a “particular” storm would have occurred, or would have occurred in the same way in the absence of our major atmospheric shift, is pointless. In some ways it is also theoretically near impossible to do. Yet drawing the conclusion of an overall total effect, and to some measure perhaps a range of extent – what matters – is far from impossible.

That is, we can know that we are affecting the movement of climate, and the reflection of weather thus within it, to an increasingly (and, albeit erratic, accelerating) degree, without being able to precisely write out the script in advance, as if climate did not still represent variable weather over many decades, and that weather was still largely unpredictable to at least some degree with it.

Yet there’s nevertheless extensive hype that the climate really isn’t much changing. Or that if it is, it’s simply random, and thus represents what the earth would be doing even if we hadn’t increased the concentrations of long lived greenhouse gases to levels not seen on earth in millions of years.

This of course would mean said geologically radical atmospheric change, by similar remarkable coincidence, is nevertheless not changing or affecting the climate – which is instead proceeding along the path it would have had our atmosphere not been altered. (In scientific terms this is called a flight of fancy. In much of the media’s eye, and climate change refuters eyes – some of whom are scientists but, notably, very few of whom are actual climate scientists – it is called a “point of view.”)

We expected climate to change, and it has now started to so change.

And most of that change is affecting the things that will both affect future change, and drive climate, and that are being all but ignored while we over-focus on the misleading picture of air temperature alone.

_____

We don’t know exactly what will change in terms of some specific functions of climate. But we have a pretty good general idea of some things that will or may change. While there are some things we don’t really have a good idea of the long term range of change on.

Such as precipitation patterns, which are ultimately a reflection of climate itself, and thus become part of it.

While we don’t really know, we expect overall precipitation patterns to change  for the basic reason that precipitation is ultimately the release of water molecules that are accumulated as a result of heat. More relevantly, as regional patterns over time are likely to vary wildly in response to what is in essence, again, a multi million year geologic shift in the net addition of energy to our earth lower atmosphere system (and one that is relatively “sudden” in geologic terms), precipitation patterns are much more likely to change within certain regions.

And the biggest problem climate change might pose for agriculture in some ways, could be a major change in our overall precipitation patterns; particularly on a regional basis.

This would include changes in various regions from dry to wet, and vice versa. And changes in the general intensity patterns and rate of precipitation.

With a generally warmer, changing atmosphere – that will both evaporate, and can hold, more moisture – there is a high chance of more intense precipitation events; with, in some areas, longer periods of no or minor precipitation in between more intense events.

The first effect, a general shifting of the overall precipitation level, will have major impacts on various regions, depending on the level of change, and those regions themselves:

Large scale agricultural production, or a society in particular, can’t always just “get up and move” to another region. So poor regions of the globe, for example, that depend upon local agricultural conditions and that have less access to water or funds for large scale irrigation, would be badly hurt by decreases in overall precipitation amounts.  And they would be potentially devastated by any major change into a far more arid regional climate from the one they have come to depend on.

The second effect – the potential increase in the intensity and variance in precipitation events – may not be as problematic in full for those areas that otherwise simply get hammered with a major change in the direction of hostile (generally, much more arid), growing conditions. But this effect will be more generally problematic across the board for at least two main reasons:

The first is that our current system of rivers and streams have either evolved, or been fine tuned, over the past few hundred thousand to few million years. (And in some cases less.) They are generally, although not perfectly, a reflection of broader longer term precipitation and evaporation patterns, not “random.” So the rivers or river and stream structure in one area wouldn’t necessarily be very adept at handling the precipitation patterns of another, for example.

Rivers also take a while to carve out from the land; they can’t be changed overnight. (And even less so with a lot of structures, other buildup and macadam, prevalent in a lot of areas.)

An increase in precipitation intensity also puts more runoff pressures on a region’s landscape. And thus, the greater the frequency and the greater amount of excess precipitation, the more common and more intense the flooding.

This effect has already been furthered by infrastructural buildup, which can sometimes narrow the effective area for natural water flow pathways in response to either ongoing intense, or changing, precipitation, and often removes trees and other natural features that help anchor the ground, control erosion, promote or allow for ground absorption, and lessen the negative effects of excess runoff.

But when it comes, again, to plants specifically, the potential increase in precipitation intensity presents an interesting future agricultural issue. For this reason: Plants generally evolved under present conditions.

It appears from fossil remains and other indicia that plants from some of the eras long long ago – when long lived atmospheric greenhouse gases were more prevalent, oceans much higher, and the globe generally warmer – and more humid, that plants were often larger.

While this may not represent all the species of such eras, it does at least make some sort of superficial common sense: A larger plant, particularly one with a strong and deeper root system, can in theory withstand the rigors and volatility of more varying, and potentially periodically intense, precipitation patterns.

This might be due to stronger anchoring, a deeper soil penetration for extra absorption capacity, and a larger upload and perhaps even storage capacity for employment during excess water availability, for example.

Think of an unwatered garden after a period of excessive drought. Many of the plants – particularly those most shallow rooted – will have perished; while nearby trees look perfectly fine.

If general precipitation patterns do accelerate in intensity – meaning higher chances of longer periods of little water, as well as of excess water in both short term intense precipitation events or multiple events over a short period of time – current crop structures might become increasingly pressured, as a higher and higher percentage of total precipitation becomes unavailable for plant growth, or in essence “wasted.”

This is already starting to happen in many areas, while many others – notably Australia, an area that leads even the U.S. in denying climate change, and already the driest continent on the planet – have been experiencing “unusual” levels of drought intensity.

Increasing intensity of events interspersed with larger variation in between significant precipitation events means there will be longer periods with insufficient or less than optimal available ground water, while there will be other periods of excess water that can’t be absorbed, and is lost due to extra runoff and even deeper ground absorption from excess water during long periods of intense precipitation.

But, plants, with human breeding assistance, can often change quickly. After all, as one example, a simple spindly wild mustard has, with much aid from the hand of man, been shaped into a family of some of the easiest growing and healthiest foods on the planet: One that includes cabbages, broccoli, Brussels sprouts, cauliflower, rapeseed (from which canola oil is derived), kale, collards, arugula, and turnips.

So perhaps we might pull off an assist toward development of longer or more extensive root systems, changed leaf water loss patterns, etc., as the needs of plants change in response to changing climate, and in particular, precipitation patterns.

But an increase in possible precipitation intensity and variance will still comprise at least part of the agricultural challenge in response to an increasingly shifting climate. Particularly for some areas of the globe, more than others, as the path of change won’t necessarily wait for our human assisted floral adaptation to it.

And, at least in the shorter term (what we’re concerned with in terms of human generational lifetimes), there may be some restrictions upon it relative to the level of change that can easily occur, given what has already been a multi million year shift (increase) in the concentration of long lived atmospheric greenhouse gases – which in turn have been radically increasing the net earth lower atmosphere energy balance. (Most of which has been going into starting and now accelerating the process of net glacial ice loss, increasing ocean heat energy, and permafrost softening and melt, all of which, to the popular and often the media eye, are largely masking the real issue of “climate change.” Here’s an interesting and it seems just now “surfacing” example.)

The increasing heat can also be problematic – a lot of plants simply stop growing past a certain temperature. But increased heat in other climates may extend growing seasons. And, in rare areas where (despite all the misinformed hype about how increased CO2 is great for plants!) CO2 is the limiting factor, increased CO2 can increase plant growth.

Much learning will likely be ongoing, as systems change, and out of necessity we struggle, experiment, and explore to adapt. (Scientifically intriguing for some wealthier areas of the globe, or, depending on how bad it might get, at least wealthier or “well off” peoples, on the one hand; very problematic to potentially devastating for poorer, less flexible, and regionally more vulnerable areas of the globe, on the other.)

But another area that in advance looks particularly problematic is that of increasing overall weather volatility.

Plants are geared to certain patterns in both light, and temperature. A changing climate is not going to change light patterns. That’s a function of the simple rotation of the earth and it’s slow undulating year long rock back and forth on its imaginary axis. (Of course if discovering that something we did was changing the rotation of the earth and its tilt on its axis and that meant it would affect the climate, climate change naysayers would find ways to refute that as well.)

But a changing climate is going to affect temperature. Increasingly, and, along the rocky way, probably – as was one of the earliest predictions, and already in these early days of “pre change,” statistically borne out – in a more volatile fashion.

This makes sense, as a normally relatively stable globe starts to respond to the increasing changes to its basic climate affecting structures (oceans, ice caps, sea ice, permafrost regions, and of course the more direct lower atmospheric absorption and re radiation of heat energy itself) in what is for all practical purpose a near geologic instant, until, voila, years, possibly centuries, down the line, when climate “relatively” re-stabilizes in response to the effected changes, long, long after the atmosphere’s levels of long lived greenhouse gases, from a geologic perspective, become at least relatively stable again.

That is, an increasingly changing system from a “relative” stases, to an ultimate new stases when it comes to what is ultimately an expression of it’s net energy – climate – is likely to be a lot more volatile, and overall, inherently changing and unpredictable, as well.

This can be kind of problematic for plants.

Think of a fruit orchard, for instance. Many fruits need a certain number of “cold days” to blossom and bear fruit. The number of days will likely continue to (increasingly) shift, and orchards might shift northward. But the increasing volatility also makes it more and more unpredictable, and subjects more and more areas to potentially insufficient cold days without moving to climes where the warmer period duration may not be sufficiently long.

Many fruit trees set their blossoms in response to a temperature change. And a late frost which kills the blossoms will prevent that tree tree from bearing any fruit at all, for that entire year.

For a homeowner enthralled with their side yard apple or apricot tree, this might range from a curiosity to a nuisance. But to an orchard owner who depends on the yearly crop, it can be a bit more.

And it adds even more to an already uncertain enterprise. Consider the following tale:

I was playing in a large, fairly publicized poker tournament some years back, and our mid level table became chatty.  One fellow was playing more like a “gambler,” than the calculating, aggressive, strategist that decent poker tournaments tend to present, and increasingly funnel as the tournament moves forward; and being extremely mirthful about it.

A few humorous but very friendly remarks were made, and this very pleasant fellow bellowed, “ah, heck, this don’t matter at all, what I do for a living is real gambling.” He sat on the word “real” for a long time, with just a hint of a much more serious tone than his statement, and most of our banter, had taken.

For an instant the hand was nearly forgotten as we all wildly conjectured. Even the dealer – consummate, almost machine like professionals in any well run, serious tournament – essentially stopped practically mid deal.

Well?

If you’re reading this article/post, you may have guessed the answer.

“I’m a farmer.  And that, I tell you, is all a gamble.”

We all laughed, enjoying the camaraderie and cultural insight while simultaneously participating in such an intensely competitive, focused, and “serious” event.  But I think we all got it.

I’ve grown a lot of plants in my time – even more since. And I really got it.

Farming is a gamble.

But there are a lot of “knowns”; or, at least relative knowns. What is becoming less known – and increasingly unpredictable – in addition to precipitation patterns in many areas, is the general nature of the season, and temperatures.

If you think being a business man or banker and not having a decent handle on what the general inflation level range might be for the next few years, try being a farmer – without much of a backup plan or lots of extra seasonal “room” – without much of a handle on just when temperatures might reasonably stay within the necessary growing range, for instance.

A lot can go wrong with extreme weather, from both the extreme nature of it, to the unpredictability, and being caught by surprise.  In hot weather, for instance extreme humid can cause pollen to become so sticky it’s doesn’t fall, while long periods of dryness can cause it to be so dry it doesn’t stick to the female part of the flower. In both cases the plant won’t set, or will set, less fruit. (Fruit incidentally refers to most things we also commonly think of as vegetables, such as cucumbers, squashes, tomatoes, corn, etc.)

Extreme heat with drought can rapidly kill plants. Premature cold spells (for example, in more northern climes that have had to shift what is grown toward warmer weather crops, as the seasons have changed) can kill plants well before they’ve realized their full yield. And late cold spells can kill them even before they start yielding at all.

Fires are also problematic, as drier conditions and hotter conditions in many regions overall is leading both a larger risk, and larger number of, fires; including many that are intense.

Many plants – tomatoes for instance – won’t set fruit if the nighttime temperatures go too high.  One of the most “certain” early predictions of the phenomenon referred to as climate change – and one of the most consistent patterns to have emerged – is the increasing overall gap between day and nighttime temperatures.

Several reasons account for this. One of the more intriguing is the general increase in overall evaporative and moisture retention capacity when the atmosphere is warmer. This can (and so far studies seem to suggest that in a mild positive to positive feedback loop it is), lead to overall increased water vapor from generally increasing temperatures.

Water vapor has both a cooling and a heating effect during the day.  The extremely short lived water vapor molecule is a reflection of climate itself and not a driver of it (despite one odd published “theory” – that itself winds up yielding a fairly interesting climate change information story – to the contrary). But it is at any one point in time an important greenhouse gas; in fact the predominant one, because there is a lot of it in the air.

During the day water vapor molecules act as greenhouse gases. And as with all atmospheric greenhouse gases, they absorb and re-radiate heat energy in the mid to longer wave length spectrum – which is to say almost no solar radiation (either incoming, or reflected off of the earth’s surface), but most thermal radiation (heat energy emitted by a body, such as the earth itself, or structures upon it).

But water vapor also acts as an atmospheric reflector of incoming solar radiation, increasing the overall albedo – or sunlight reflecting capacity – of the earth/atmosphere, and causing a higher percentage of sunlight to never reach the lower atmosphere/surface of the earth (where some is then in turn absorbed as heat energy) to begin with.

At night only one of these two phenomena occur. There is no incoming solar radiation, so the reflectivity question isn’t an issue.

But the re-capture of thermal radiation still is. This is energy emitted in wavelength form, and, specifically, the type of energy that is absorbed and re radiated in all directions by greenhouse gases – without which the earth would be a large almost lifeless ball of ice floating through space.

If water vapor levels are higher, more thermal radiation will be “trapped.” Particularly at night.

Regardless, the gap in day and night time temperatures, in many regions across the globe, has considerably narrowed, which as it continues, will also continue to have more and more intense consequences for at least some of the plants upon which we rely.

The list goes on. But this is a start. We probably “aint seen nuthin’ yet,” for very fundamental scientific reasons (along with a lot geologic and modern era data), that are largely being mangled, overlooked, confused or turned into something they are not, while the entire climate change issue is as well.

But while agriculture, including its extensive use of and indirect reliance upon fossil fuels, and large impact upon the landscape, is the rarely talked about main contributor to the phenomenon known too popularly as climate change (the issue is really the multi million year – or geologically radical – alteration in our atmosphere’s long term heat “trapping” quotient), the dance the world is going to have with this mainstay of existence – providing enough food – is probably going to be an increasingly interesting one.

And by “interesting,” for many poorer areas and peoples of the world, this means “bad.

Potentially, extremely bad.

This is also ironic, because some groups that have not necessarily been outspoken advocates for the poor, when it comes to climate change, have suddenly become the “Mother Teresa,” of indigent poor advocacy, on the ill conceived and highly ironic assertion that addressing climate change (not climate change itself, rendering informed scientists/anthropologists extremely frustrated in the process) will harm the poor.

But what is really going to harm the poor in particular is the radical alteration of our atmosphere – again, reflecting a change that has now taken us back to levels not seen in millions of years,and a large portion of which has occurred in just the last 50 or so years alone; and which is right now still occurring at geologically breakneck speed.

It’s just a question of how much we mitigate it, and how sensibly, and quickly, we do so. Both in terms of the U.S. leading the way – which will increase our moral ability as the world’s bully pulpit and most powerful (and somewhat feared) nation to encourage change, desire to do so by our show of faith, and an increasing return by other countries knowing that more and more of their own effort and the efforts of others is contributing – and elsewhere.

Major Methane Spikes From Warming Sea Beds Are Compounding a Vastly Underestimated Climate Change Challenge

This piece has been completely updated and revised, with major new sections of information added, and re-posted here.

Deep Into the Abyss of Climate Change, and a Case of Australian Media Coverage

Global climate is about changing the energy balance of the entire globe – with the climate of the globe, as well as the various regions of the globe, shifting in response. But while what is evolving in terms of beginning regional changes is hard to tell, so far Australia has not been the benefactor of good climate news.

While an unusually dry continent to begin with, Australia experienced a particularly long period of drought into the 2000s (predominantly 2002-2007), that all but dried up several key river beds. The drought also hit Australian farmers particularly hard, leading to an astonishing 4.5 billion dollars by the Australian government in direct relief.

The desiccated period was officially declared over in 2012, but yet, drought returned again in 2013. And over the past few decades, the continent has experienced a significant decline in precipitation – at least some of which, according to a recent study published in the Journal Nature Geoscience, is due to man influenced increases in long term atmospheric greenhouse gas concentrations.  And according to a recent study published in the world’s leading science magazine, such extreme effects are likely to increase dramatically in Australia as a result of the phenomenon commonly referred to as Climate Change.

What about plain, pure atmospheric heat?

Globally, the year 2013 was one of the warmest on record, according to all three of the major global temperature sets. (NASA’s Goddard, the Climatic Research Unit, or CRU of the University of East Anglia, and NOAA’s National Climatic Data Center, though naturally, finding those alone inconvenient, the highly self reinforcing if not self sealing Climate Change Nay-saying Site WUWT adds a 4th – the University of Alabama at Huntsville, led by Roy Spencer, who sees his job as a climate scientist as one to not just necessarily study climate science, but to “minimize the role of government.”)

A composite of all three major temperature sets, according to the World Meteorological Organization, rendered 2013 the sixth hottest on record, and shows that 13 of the 14 warmest years on record have all occurred in the 21st century; meaning every single year since the new millennium began has seen a year warmer overall than all those that occurred prior to 2000, save for one, 1998, just two years before the start of the new millennium.

Yet 2013 saw the U.S. have it’s “42nd” warmest year in modern record.  Being as no year has been below the average globally for over 30 years now, the 42nd warmest means that 2013 in the U.S. was relatively cool.

Not so in Australia, which also saw it’s hottest year on record – it’s hottest year ever in modern times – last year, in 2013.

There’s also some hot air coming out of some Australian newspapers. Or at least an air of inaccuracy. Here, regarding the oceans; the key long term driver of climate.

And not just by a random reporter, but by the Environmental Editor of The Australian.

Ocean temperature are tricky. We can get a pretty good feel for surface temperatures – after all, monitoring surface temperatures around the world isn’t too difficult.

Drop down a little bit, and getting temperature measurements becomes harder. Drop down some more, and it becomes trickier still.

Drop down into the super deep, also known as “The Abyss,” and getting almost any kind of information is exceedingly difficult.

Two leading oceanographers, Carl Wunsch from Harvard University, and Patrick Heimbach of M.I.T.recently tried to wrangle with the problem of the “super deep.” They suggested that while parts of the ocean’s Abyss had been warming – mainly in the high southern latitudes and Western basis of the Atlantic – it has been cooling elsewhere.

Are Wunsch and Heimbach Correct?

Who knows. Probably not even they do; but they almost undoubtedly have a far better feel for the issue than we do. (Though the last time I went spear fishing in the abyss, over 12,000 feet (more than two miles) below the ocean’s surface, now that I think about it, it was colder than normal. Even with my very thick 1 millimeter neoprene t-shirt, I started to get a tad chilly after a few hours battling submarine sharks one handed. And it was, what do you know, in the Eastern, not Western, basis of the Atlantic. So maybe Wunsch and Heimbach are right!)

Yet what did The Australian, and it’s environmental editor, take from this?: “The deep oceans are cooling” (subscription required).

What is simply less than optimal (aka, “bad”) journalism, and what is hard bias on a subject where bias and confusing information has taken over, and subverted the central key facts and issues?

It’s difficult to say, as it’s tough being a journalist these days. For one thing, it’s an important job. Yet there is a citizen army of online opinion makers, as well as far better organized advocacy or pseudo news organizations, all just minutes away from starting a website and being able to create, spin, and re report news, and provide constant yet unfiltered, unaccountable, competition; and a corporate environment that naturally must be sensitive to this. And there is a near constant drum beat of press castigation by those who, mangled as the press sometimes does get things in the name of “false balance,” still don’t like what the press has to say.

Yet despite some popular perception these days – perception largely created by anti science and anti science attacks by Climate Change Naysayers and fossil fuel lobbyist groups – scientists in general, when it comes to science matters, tend to under rather than over state.  It’s the nature of science.

So when scientists write “cherry picks statements” and “misses some key points,” that’s generally the polite and understated way of suggesting that somebody either completely misinterpreted a study and wrote about it accordingly, or simply deceived (themselves) and readers.

Yet in a letter to the editor of The Australian (found halfway down the page), “cherry picking and missing some key points” is precisely what Wunsch asserts about The Australian article.

Their assessment is that parts of the Abyss are cooling.  Some parts are warming. Not most of the deep ocean; but the parts of the ocean even deeper down than that, several thousand meters down and beyond.

The ocean abyss, or abyssopelagic zone, is the hardest part of the ocean to assess.  The surface of the ocean (and the most directly relevant, since it has direct interaction with the atmosphere) is the easiest part to assess. The “deep” ocean refers to the bulk of the ocean, from several hundred to a few thousand meters down, a vast waterland that is far harder to asses than the upper layer of the ocean. d is far harder to assess, and we don’t know exactly what is going on there. Below that even lies “the Abyss.”

Oceans are complex, and, huge.  The world’s ocean (commonly divided into five separate parts), contains over 1.3 billion cubic kilometers of water. Dive down just 8 feet to the deep end of a swimming pool in the summertime, and it’s going to be noticeably cooler than just a few feet up closer to the surface. Trillions of those swimming pools full of water could fit into the world ocean. Yet dive down from the surface of the ocean several meters, and it still gets cooler.

Now imagine diving down a few hundred meters. Or even a few thousand. Meters, straight down. (A mile straight down would be about 1610 meters.)

The abyss lies well below that.  Technically, at 4000 meters  – about two and a half miles – down. The deep ocean refers to the mesopelagic and bathypelagic zones, from between 200 to 4000 meters down, though usually from a bout 1000 meters down (and frequently also includes the deep, deep ocean, or abyss).

Over time, just as in a swimming pool, but by more complex and far slower processes – processes, that Wunsch suggests, are different (or more prevalent) in various areas of the globe – lower and upper ocean layers do intermingle. Ultimately if the upper oceans warm, lower ocean areas will likely warm also.  If just a little bit, and if still remaining, very, very cold.

What is happening in the few hundred to few thousand yards meters below the surface? This is a massive amount of water, and there has been some surmising that these areas might be starting to warm also, reflecting increased heat affects – slow and imprecise as this might be – from mixing above.

It seems to make little sense that as the oceans are being affected, the water just below the upper layer would not, if far more slowly, be so affected as well.  Yet this seems to have persisted in assumption.

The standard assumption has been that, while heat is transferred rapidly into a relatively thin, well – mixed surface layer of the ocean (averaging about 70 m in depth), the transfer into the deeper waters is so slow that the atmospheric temperature reaches effective equilibrium with the mixed layer in a decade or so…It seems to us quite possible that the capacity of the deeper oceans to absorb heat has been seriously underestimated, especially that of the intermediate waters of the subtropical gyres lying below the mixed layer and above the main thermo­cline. If this is so, warming will proceed at a slower rate until these inter­mediate waters are brought to a temperature at which they can no longer absorb heat.

Also found more directly here, the foregoing is from an ad hoc study group at the request of the National Academy of Sciences, published in 1979 (and as aptly noted here by the website SkepticalScience.com.)

The idea that warming “will proceed at a slower rate until these intermediate waters are brought to a temperature at which they can no longer absorb heat” seems reasonable, if slightly contrived, in that if upper waters continue to warm relative to intermediate warmers, then intermediate waters can continue to absorb heat.

But the main point seems well taken:  Upper level absorption of atmospheric heat energy probably can’t tell the entire story, because over time some of that upper level absorption will be absorbed by waters below.

Thus the “transfer” or energy from atmosphere to ocean is ongoing, and fluid (no pun intended), rather than a start and stop process of “mixing until the atmosphere and upper ocean are are in balance,”when the upper level atmospheric mixing is ongoing and increasing –  as the atmosphere itself is re radiating back downward (and in all directions), increasing amounts of heat energy as it is.

This would likely not lead to any short term stases or “complete upper layer mixing” as if it was wholly separate from the rest of the ocean, but an ongoing increase in upper ocean heat, which at the same time is nevertheless very likely not capturing all of the energy being lost back to the earth below it rather than lost to the upper atmosphere and space above due to increasing amounts of absorbed and re radiated thermal radiation via geologically high, and still rapidly increasing, concentrations of long lived greenhouse gases in our atmospheric; because some of that upper ocean heat, in turn, is probably invariably being absorbed by the deeper ocean waters below the upper layer. (And in turn, leading to likely even more deeply entrenched longer term effects.)

Either way, maybe we’re still a little behind the times on the ocean.

And maybe the view that, in a world of wild climate variability,  and long term earth system integration of increased re-radiated short term atmospheric energy from higher collective levels of long term greenhouse gases than have likely been seen on earth in several million years,  we could somehow model a nearly precise pathway of the rate of change, or that increases in temperatures should somehow be progressive on a mind bogglingly short term geologic scale, is misplaced.

Perhaps over a quintillion (specifically, about 1.75 x 10 to the eighteenth power) cubic yards of water, which can hold an incredible amount of energy relative to the atmosphere, and which adjust very slowly – and which to us still remain, somewhat of an “abyss” – are part of the reason why.

As a side note, one way to use the increased net energy being retained by our earth atmosphere system as a result of radically increased concentrations of long lived greenhouse gases (ironically caused in large part by our own use of energy, via the burning of fossil fuels) and “free two birds with one stone,” so to speak, if ever technologically feasible, would be to transfer some of that vast energy out of the oceans in usable form; thus both reducing the impact of our increased atmospheric heat re radiation, and generating energy at the same time.(Rather than generating energy in a way that simply continues to impact atmospheric greenhouse gas buildup, but in a much lesser way, this would offset some of the impact of the atmospheric build up – in essence, be equivalent to “greenhouse gas negative” – while producing net energy at the same time.)

In other words, utilizing a process that both produces usable energy, while at the same time simultaneously reducing the long term phenomenon of Climate Change. Or, looked at another way, reducing the long term phenomenon of Climate Change by a process that as a byproduct, creates not yet another pollutant, but pure, usable, energy itself, instead. (Another, simpler if far more minimal way to do this is to plant a tree or trees with broad upper level limbs on a home’s southern exposure. The tree(s) will take carbon dioxide out of the air while shielding the home from higher angle summer sunlight and thus reduce the need for energy for air conditioning, while allowing some lower angle winter sunlight to reach part of the side and roof of the home, helping to warm it slightly on sunny winter days. Another way would be to paint all roofs in southern high sunshine areas white: While also very minor, the increased albedo from the roof would reflect more solar radiation back out in the atmosphere in relatively short wavelength form where it is essentially not absorbed and re radiated by greenhouse gas molecules, while simultaneously lessening solar absorption by the building, and reducing the need for air conditioning energy for the same temperature level.)

The problem is, we don’t really necessarily know how to extract energy from ocean heat build up on a feasible scale, though Lockheed Martin, among others, is trying, and showing some promise.

Perhaps if the fossil fuel industry took its hundreds of millions of dollar directed toward anti climate change information and advocacy, and directed it into such novel ideas as this instead, we’d be farther along.  At least our level of understanding of the issue of climate change, and thus our assessment of of it, would be better.  And we’d be more focused on solutions and non ideology driven assessment, rather than on zealous advocacy.

Or perhaps if we moved out of this false land of terribly inefficient “cheap” (but highly damaging) energy to that something at least somewhat more closely resembling the real cost of all forms of energy and related processes, we might be able to as well.

And without listening to international anti visionaries such as Bjorn Lomborg, who in testimony to the U.S. Senate Committee Environment and Public Works on July 29, 2014, among other times, argued that the affects of climate change won’t really cost much over the long run, and that we can’t use clean energy to help reduce additions to the problem because it is not cheap enough, without seemingly realizing that market needs, not idealism, drive most development and efficiencies (and cost reductions), or realizing that “cheaper,” macro-economically, over time is an entirely relative term. And that the increasingly accumulating build up of heat energy over time, which is likely to radically shift future climate, is not so relative.